Introduction. The Taylor Complex Figure (TCF) technique is one of the neuropsychologist’s tools and is used to diagnose children after 4 y.o. and adults for assessing visual spatial characteristics, visual constructive skills and visual memory.
However, the lack of quantitative standards for using the Taylor method obtained within the Russian sample makes it difficult to apply it both in research and in practical work.
The Objective is to obtain age standards of the “Taylor Integrated Figure” technique on children 4–17 years old, and also to validate it according to the results of a neuropsychological examination.
Procedure. The study used the quantitative approach to assess the “Taylor Integrated Figure” children of 4–17 years. Each of the 18 elements of the figure was evaluated by the quality of the pattern and the correctness of the placement in space. The figure obtained by copying the original image and the figure reproduced by memory 20 minutes after copying were separately evaluated. Additionally, a qualitative assessment of the figures was carried out according to the level of development of metric and structural topological representations. The study involved 377 children, of which 243 boys and 134 girls aged from 52 to 214 months (average age - 117 ± 42 months).
Results. The nonlinear dependence of the estimated indicators on age was found. Age standards for the implementation of the technique for 5 age groups (4–5, 6–7, 8–9, 10–12, 13–17 years) were calculated. Indicators of the complexity of working with each element of the figure were obtained. Based on the analysis of the success ratio of the simplest and most complex elements of the figure, a mathematically grounded threshold for making a decision on the presence of aggravation has been proposed. The validity of the technique was assessed based on the results of a neuropsychological examination. It is shown that the technique to the greatest extent measures structural and spatial functions and visual memory in children under 13 years, it has low discriminant validity with respect to other neuropsychological characteristics. The substantive validity of qualitative assessments and quantitative indicators is in many respects the same, while quantitative indicators are about 1.5 times more strongly associated with the results of neuropsychological diagnostics.
Conclusion. Analysis of the predictive ability of logistic regression models indicates the possibility of applying the technique for screening diagnostics at school. The method allows separating children without neurocognitive deficiency from those who need to undergo a full neuropsychological examination.
PDF: Download
Keywords: guideline exposure; children; neuropsychological diagnostics; constructive-spatial functions; visual memory disorder; spatial conceptions; validity;
Available Online 30.04.2019
Table 2. Age standards of using “Taylor Integrated Figure” technique
Age (years) |
4–5 |
6–7 |
8–9 |
10–12 |
13–17 |
Quantitative Evaluation |
|||||
Copy - figure(CF) |
8.6 ± 4.2 |
13.8 ± 2.3 |
15.7 ± 1.4 |
16.4 ± 1.2 |
17 ± 1.4 |
Copy – placement(CP) |
9.4 ± 5 |
14.5 ± 2.7 |
16.5 ± 1.4 |
17.1 ± 1.1 |
17.5 ± 1.3 |
Reproduction – figure (RF) |
5.3 ± 4 |
9.4 ± 3.2 |
11.7 ± 3.6 |
12.5 ± 2.9 |
13.8 ± 3 |
Reproduction – placement(RP) |
5.7 ± 4.5 |
9.7 ± 3.5 |
12.4 ± 3.8 |
13.3 ± 3.2 |
14.6 ± 3.1 |
Copy (C) |
18 ± 9.1 |
28.3 ± 4.8 |
32.3 ± 2.5 |
33.5 ± 2.2 |
34.5 ± 2.6 |
Reproduction (R) |
11 ± 8.4 |
19.1 ± 6.6 |
24.1 ± 7.3 |
25.8 ± 6 |
28.4 ± 6 |
Figure (F) |
13.8 ± 7.7 |
23.1 ± 5 |
27.4 ± 4.5 |
28.9 ± 3.7 |
30.7 ± 3.9 |
Placement (P) |
15.1 ± 8.9 |
24.3 ± 5.5 |
29 ± 4.8 |
30.4 ± 3.8 |
32.1 ± 3.8 |
Total Score |
29 ± 16.4 |
47.4 ± 10.3 |
56.3 ± 9.1 |
59.2 ± 7.3 |
62.8 ± 7.6 |
Qualitative Evaluation |
|||||
Copy – metric representations(CM) |
2.1 ± 1 |
3.2 ± 0.7 |
3.6 ± 0.7 |
4 ± 0.6 |
4.3 ± 0.6 |
Copy-structural topological representations (CST) |
2.3 ± 1.2 |
3.3 ± 0.9 |
4.1 ± 0.7 |
4.4 ± 0.7 |
4.7 ± 0.5 |
Reproduction – metric representations(RM) |
1.5 ± 1 |
2.7 ± 0.8 |
3.3 ± 0.8 |
3.6 ± 0.7 |
4 ± 0.7 |
Reproduction - structural and topological representations (RST) |
1.5 ± 1.1 |
2.4 ± 0.9 |
3.1 ± 1 |
3.4 ± 0.8 |
3.8 ± 0.9 |
Table 3. Taylor Complex Figure elements
№ |
Taylor Complex Figure elements |
Initial Scale |
Mean |
|||
CF |
CP |
RF |
RP |
|||
1 |
Arrow at left |
-2.5621 |
-2.4849 |
-1.2341 |
-1.1965 |
-1.8694 |
2 |
Triangle at left |
-1.9612 |
-2.1595 |
-1.1524 |
-1.3038 |
-1.6442 |
3 |
Square |
-0.5549 |
-2.4481 |
-0.3757 |
-1.7047 |
-1.2709 |
4 |
Horizontal line |
-1.5873 |
-1.8105 |
-1.0601 |
-1.0951 |
-1.3883 |
5 |
Vertical line |
-1.5779 |
-1.3276 |
-0.9717 |
-0.836 |
-1.1783 |
6 |
Horizontal line in top half |
-1.219 |
-1.4181 |
0.6419 |
0.6185 |
-0.3442 |
7 |
Diagonals in top left quadrant |
-2.1312 |
-1.7253 |
-0.7011 |
-0.6477 |
-1.3013 |
8 |
Square in top left quadrant |
-1.4609 |
-1.6254 |
-0.4756 |
-0.5607 |
-1.0307 |
9 |
Circle |
-2.7338 |
-2.2795 |
-1.088 |
-0.9717 |
-1.7683 |
10 |
Rectangle |
-1.8105 |
-1.9368 |
-0.3757 |
-0.3867 |
-1.1274 |
11 |
Arrow at top right quadrant |
-2.0499 |
-1.3117 |
-1.067 |
-0.5952 |
-1.256 |
12 |
Semicircle |
-1.7779 |
-1.204 |
-0.2722 |
0.0318 |
-0.8056 |
13 |
Triangles |
-1.5593 |
-1.4351 |
0.3374 |
0.0637 |
-0.6483 |
14 |
Dots |
-1.0053 |
-1.6254 |
-0.1488 |
-0.4532 |
-0.8082 |
15 |
Horizontal line between dots |
-2.0765 |
-2.0499 |
-0.1328 |
-0.0956 |
-1.0887 |
16 |
Triangle at bottom |
-2.0112 |
-2.2031 |
-0.2668 |
-0.2722 |
-1.1883 |
17 |
Streacky wave |
-0.4365 |
-1.9249 |
0.1051 |
-0.9321 |
-0.7971 |
18 |
Star |
-0.5607 |
-2.1595 |
0.2237 |
-0.47 |
-0.7416 |
Table 4. Neuropsychological validity regression models of “Taylor Complex Figure” technique (total score)
Neuropsychological characteristics |
Standardizedcoefficient |
R2 |
Adjusted R2 |
4–17 years (together) |
|||
Visual memory |
0.536 |
0.426 |
0.425 |
Constructive-spatial functions |
0.115 |
0.454 |
0.451 |
Thinking |
0.113 |
0.469 |
0.464 |
Dynamic Praxis |
0.092 |
0.478 |
0.472 |
Visual perception |
0.091 |
0.484 |
0.477 |
4–5 years |
|||
Constructive-spatial functions |
0.429 |
0.28 |
0.26 |
Thinking |
0.301 |
0.413 |
0.379 |
Oral-verbal memory |
0.295 |
0.491 |
0.445 |
6–7 years |
|||
Visual memory |
0.432 |
0.279 |
0.272 |
Visual perception |
0.229 |
0.327 |
0.313 |
Dynamic Praxis |
0.184 |
0.361 |
0.341 |
8–9 years |
|||
Visual memory |
0.585 |
0.582 |
0.574 |
Visual perception |
0.253 |
0.64 |
0.626 |
Dynamic Praxis |
0.23 |
0.698 |
0.68 |
Constructive-spatial functions |
0.174 |
0.724 |
0.701 |
10–12 years |
|||
Visual memory |
0.663 |
0.503 |
0.495 |
Dynamic Praxis |
0.289 |
0.584 |
0.572 |
13–17 years |
|||
Visual memory |
0.641 |
0.611 |
0.606 |
Constructive-spatial functions |
0.269 |
0.664 |
0.655 |
Neuropsychological characteristics |
Standardizedcoefficient |
R2 |
скорректированныйR2 |
4–17 years (все вместе) |
|||
Constructive-spatial functions |
0.276 |
0.153 |
0.150 |
Regulatory functions |
0.164 |
0.196 |
0.191 |
Dynamic Praxis |
0.134 |
0.212 |
0.205 |
Visual memory |
0.129 |
0.226 |
0.217 |
4–5 years |
|||
Constructive-spatial functions |
0.509 |
0.287 |
0.266 |
Attention |
0.323 |
0.39 |
0.354 |
6–7 years |
|||
Visual perception |
0.196 |
0.109 |
0.1 |
Dynamic Praxis |
0.204 |
0.166 |
0.148 |
Constructive-spatial functions |
0.248 |
0.217 |
0.192 |
Regulatory functions |
0.198 |
0.253 |
0.222 |
8–9 years |
|||
Regulatory functions |
0.301 |
0.254 |
0.239 |
Constructive-spatial functions |
0.292 |
0.36 |
0.335 |
Dynamic Praxis |
0.282 |
0.426 |
0.392 |
Visual perception |
0.229 |
0.476 |
0.434 |
10–12 years |
|||
Constructive-spatial functions |
0.337 |
0.256 |
0.245 |
Dynamic Praxis |
0.311 |
0.366 |
0.347 |
Attention |
0.25 |
0.424 |
0.398 |
13–17 years |
|||
Constructive-spatial functions |
0.415 |
0.173 |
0.161 |
Table 6. Regression models of neuropsychological validity of the “Taylor Complex Figure” technique (on the secondary scale “Reproduction”)
Neuropsychological characteristics |
Standardizedcoefficient |
R2 |
Adjusted R2 |
4–17 years (все вместе) |
|||
Visual memory |
0.605 |
0.494 |
0.493 |
Oral-verbal memory |
0.125 |
0.514 |
0.511 |
Visual perception |
0.107 |
0.525 |
0.521 |
Regulatory functions |
0.084 |
0.532 |
0.526 |
4–5 years |
|||
Visual memory |
0.357 |
0.364 |
0.346 |
Oral-verbal memory |
0.331 |
0.476 |
0.445 |
Constructive-spatial functions |
0.314 |
0.56 |
0.52 |
6–7 years |
|||
Visual memory |
0.495 |
0.358 |
0.351 |
Speech |
0.201 |
0.41 |
0.398 |
Visual perception |
0.175 |
0.435 |
0.417 |
8-9 years |
|||
Visual memory |
0.662 |
0.598 |
0.591 |
Visual perception |
0.279 |
0.663 |
0.65 |
Dynamic Praxis |
0.177 |
0.693 |
0.675 |
10–12 years |
|||
Visual memory |
0.729 |
0.573 |
0.567 |
Dynamic Praxis |
0.180 |
0.605 |
0.593 |
13–17 years |
|||
Visual memory |
0.719 |
0.684 |
0.68 |
Constructive-spatial functions |
0.206 |
0.715 |
0.707 |
Table 7. Regression models of neuropsychological validity of the “Taylor Complex Figure” technique (on the secondary scale “Figure”)
Neuropsychological characteristics |
Standardizedcoefficient |
R2 |
Adjusted R2 |
4–17 years (все вместе) |
|||
Visual memory |
0.452 |
0.379 |
0.377 |
Constructive-spatial functions |
0.134 |
0.411 |
0.407 |
Thinking |
0.105 |
0.427 |
0.422 |
Oral-verbal memory |
0.101 |
0.439 |
0.432 |
Visual perception |
0.102 |
0.448 |
0.440 |
Regulatory functions |
0.091 |
0.456 |
0.446 |
4–5 years |
|||
Constructive-spatial functions |
0.41 |
0.266 |
0.245 |
Oral-verbal memory |
0.334 |
0.415 |
0.381 |
Thinking |
0.268 |
0.482 |
0.435 |
6–7 years |
|||
Visual memory |
0.361 |
0.269 |
0.262 |
Visual perception |
0.256 |
0.34 |
0.326 |
Oral-verbal memory |
0.217 |
0.388 |
0.369 |
Dynamic Praxis |
0.17 |
0.417 |
0.392 |
8–9 years |
|||
Visual memory |
0.586 |
0.506 |
0.497 |
Visual perception |
0.284 |
0.57 |
0.554 |
Dynamic Praxis |
0.243 |
0.627 |
0.605 |
10–12 years |
|||
Visual memory |
0.614 |
0.429 |
0.421 |
Dynamic Praxis |
0.262 |
0.496 |
0.482 |
13–17 years |
|||
Visual memory |
0.56 |
0.526 |
0.519 |
Constructive-spatial functions |
0.314 |
0.597 |
0.586 |
Table 8. Regression models of neuropsychological validity of the “Taylor Complex Figure” technique (on the secondary scale “Placement”)
Neuropsychological characteristics |
Standardizedcoefficient |
R2 |
Adjusted R2 |
4–17 years (все вместе) |
|||
Visual memory |
0.571 |
0.43 |
0.429 |
Constructive-spatial functions |
0.119 |
0.452 |
0.448 |
Thinking |
0.104 |
0.463 |
0.458 |
Dynamic Praxis |
0.088 |
0.47 |
0.464 |
4–5 years |
|||
Constructive-spatial functions |
0.453 |
0.299 |
0.279 |
Thinking |
0.301 |
0.428 |
0.394 |
Oral-verbal memory |
0.269 |
0.492 |
0.446 |
6–7 years |
|||
Visual memory |
0.431 |
0.262 |
0.254 |
Dynamic Praxis |
0.193 |
0.302 |
0.287 |
Visual perception |
0.188 |
0.332 |
0.311 |
8–9 years |
|||
Visual memory |
0.601 |
0.61 |
0.603 |
Visual perception |
0.266 |
0.678 |
0.666 |
Constructive-spatial functions |
0.205 |
0.72 |
0.704 |
Dynamic Praxis |
0.161 |
0.745 |
0.725 |
10–12 years |
|||
Visual memory |
0.664 |
0.503 |
0.496 |
Dynamic Praxis |
0.271 |
0.582 |
0.57 |
Progress rate |
0.169 |
0.611 |
0.593 |
13–17 years |
|||
Visual memory |
0.723 |
0.662 |
0.658 |
Constructive-spatial functions |
0.173 |
0.684 |
0.675 |
Table 9. Predicted data of neurocognitive deficiency “Taylor Complex Figure” technique (total score)
|
Obtained data |
|
Predicted data |
With neurocognitive deficiency |
Without neurocognitive deficiency |
With neurocognitive deficiency |
36 |
63 |
Without neurocognitive deficiency |
19 |
222 |
Table 10. Predicted data of neurocognitive deficiency “Taylor Complex Figure” technique (“Copy” scale)
|
Obtained data |
|
Predicted data |
With neurocognitive deficiency |
With neurocognitive deficiency |
With neurocognitive deficiency |
27 |
55 |
Without neurocognitive deficiency |
28 |
230 |
Akhutina T.V., & Pylaeva N.M. (2015). Overcoming the difficulties of learning: Neuropsychological approach: studies. allowance for stud. institutions higher. education. Moscow, Akademiya, 288.
Akhutina T.V., Kamardina I.O., & Pylaeva N.M. (2012). Neuropsychologist at school: a manual for teachers, school psychologists and parents. Moscow, V. Sekachev, 48.
Akhutina T.V., Korneev A.A., & Matveeva E.Yu. (2016). Development of programming and control functions in children aged 7–9 years. [Vestnik Moskovskogo Universiteta].Series 14. Psychology, 1, 42–63.
Awad N., Tsiakas M., Gagnon M., Mertens V.B., Hill E., & Messier C. (2004). Explicit and objective scoring criteria for the Taylor complex figure test. Journal of Clinical and Experimental Neuropsychology, 26(3), 405–415.doi:10.1080/13803390490510112
Balashov E.Yu., & Kovyazina M.S. (2014). Neuropsychological diagnosis. Classic stimulus materials. Moscow, Genesis, 12 (+ 72)
Balashova E.Yu., & Kovyazina M.S. (2013). Neuropsychological diagnostics in questions and answers. Moscow, Genesis, 240.
Casey M.B, Winner E., Hurwitz I., & DaSilva D. (1991). Does processing style affect recall of the Rey-Osterrieth or Taylor complex figures? Journal of Clinical and Experimental Neuropsychology,13(4), 600–606.doi:10.1080/01688639108401074
Del Pino R., Peña J., Ibarretxe-Bilbao N., Schretlen D.J., & Ojeda N. (2015). Test de la figura compleja de Taylor: administración y corrección según un proceso de normalización y estandarización en población española. Revista De Neurologia, 61(9), 395–404.
Duley J.F., Wilkins J.W., Hamby S.L., Hopkins D.G., Burwell R.D., & Barry N.S. (1993). Explicit scoring criteria for the Rey-Osterrieth and Taylor complex figures. The Clinical Neuropsychologist, 7(1), 29–38.doi:10.1080/13854049308401885
Gagnon M., Awad N., Mertens V.B., & Messier C. (2003). Comparing the Rey and Taylor Complex Figures: A Test-Retest Study in Young and Older Adults. Journal of Clinical and Experimental Neuropsychology, 25(6), 878–890.doi:10.1076/jcen.25.6.878.16480
Glozman J.M. (2009). Neuropsychology of childhood: manual. Moscow, Akademiya, 272.
Glozman J.M. (2017). Neuropsychology of childhood: textbook. Moscow, Yurayt, 258.
Glozman J.M., & Sobolev A.E. (2013). Neuropsychological diagnosis of school-age children. Moscow: Meaning, 166.
Glozman Zh.M. (ed.) (2016). Practical neuropsychology. Experience of working with children learning with difficulties. Moscow, Genesis, 336.
Korsakova N.K., Mikadze Yu.V., & Balashova E.Yu. (2017). Poor children: neuropsychological diagnosis of younger students: manual. Moscow, Yurayt, 156.
Kuehn S.M., & Snow W.G. (1992). Are the Rey and Taylor figures equivalent? Archives of Clinical Neuropsychology,7(5), 445–448.
Manelis N.G. (1997). Development of optical-spatial functions in ontogenesis. [Shola zdorov’ya],4(3), 25–37.
Melrose R.J., Harwood D., Khoo T., Mandelkern M., & Sultzer D.L. (2013). Association between cerebral metabolism and Rey-Osterrieth Complex Figure Test performance in Alzheimer’s disease. Journal of Clinical and Experimental Neuropsychology,35(3), 246–258.doi:0.1080/13803395.2012.763113
Meyers J.E., & Meyers K.R. (1995). Rey complex figure test under four different administration procedures. The Clinical Neuropsychologist,9(1), 63–67.doi:10.1080/13854049508402059
Mikadze Yu.V. (2013). Neuropsychology of childhood: study guide. St. Petersburg, Piter, 288.
Osterreith P.A. (1944). La test de copie d'une figure complexe. Archives de Psychologie,30,206–356.
Polonskaya N.N. (2007). Neuropsychological diagnosis of children of primary school age: manual for higher school. Moscow, Akademiya, 192.
Rey A. (1941). L'examen psychologie dan les cas d'encéphalopathie traumatique (Les problèmes). Archives de Psychologie, 28, 215–285.
Semago N.Ya., & Semago M.M. (2007).The diagnostic kit of the psychologist: manual. Moscow, APKiPRO RF, 128.
Semenovich A.V. (2013). Introduction to the neuropsychology of childhood: study guide. Moscow, Genesis, 319.
Shmelev A.G. (2013). Practical testing. Testing in education, applied psychology and personnel management. Moscow, Maska, 688.
Simernitskaya E.G. (1982). On the subject and specifics of child neuropsychology. A.R. In E.D. Chomskoy, L.S. Tsvetkova, & B.V.Zeigarnik (eds.) [Luriya i sovremennaya psikhologiya: sbornik statey pamyati A.R. Lurii].Moscow, Izdatelstvo Moskovskovskogo Universiteta, 110–118.
Stern R.A., Singer E.A., Duke L.M., Singer N.G., Morey C.E., Daughtrey E.W., & Kaplan E. (1994.) The Boston qualitative scoring system for the Rey-Osterrieth complex figure: Description and interrater reliability. Clinical Neuropsychologist, 8(3), 309–322.doi:10.1080/13854049408404137
Strauss E., & Spreen O. (1990). A comparison of the Rey and Taylor figures. Archives of Clinical Neuropsychology, 5(4), 417–420.doi:10.1093/arclin/5.4.417
Strauss E., Sherman E.M.S., & Spreen O. (2006). A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary. 3rd ed. New York: Oxford University Press,1240.
Taylor E.M. (1959). Psychological Appraisal of Children with Cerebral Defects. Cambridge: Harvard University Press, 499.doi:10.4159/harvard.9780674367494
Taylor L.B. (1969). Localisation of cerebral lesions by psychological testing. Clinical Neurosurgery, 16, 269–287.doi:10.1093/neurosurgery/16.CN_suppl_1.269
Taylor L.B. (1979). Psychological assessment of neurosurgical patients. (Eds.) T. Rasmussen, & R. Marino. Functional Neurosurgery. New York: Raven Press, 165–180.
Tombaugh T.N., & Hubley A.M. (1991). Four studies comparing the Rey-Osterrieth and Taylor complex figures. Journal of Clinical and Experimental Neuropsychology,13(4), 589–599.doi:10.1080/01688639108401073
Tremblay M.P., Potvin O., Callahan B.L., Belleville S., Gagnon J.F., Caza N., Ferland G., Hudon C., & Macoir J. (2015). Normative data for the Rey-Osterrieth and the Taylor complex figure tests in Quebec-French people. Archives of Clinical Neuropsychology, 30(1), 78–87.doi:10.1093/arclin/acu069
Tsvetkova L.S. (2000). Methods of neuropsychological diagnosis of children. Moscow, Pedagogicheskoe obshchestvo Rossii, 128.
Vingerhoets G., Lannoo E., & Wolters M. (1998). Comparing the Rey-Osterrieth and Taylor Complex Figures: Empirical data and meta-analysis. Psychologica Belgica,38(2), 109–119.
Wasserman L.I., & Cherednikova T.V. (2013). The non-verbal technique “The complex figure” of Ray-Osterrit and its psycho-diagnostic value for the qualification of the neurocognitive deficit. [Sibirskiy Psikhologicheskiy zhurnal],49, 13–25.
Wasserman L.I., & T.V. Cherednikova (2011). Psychological diagnostics of neurocognitive deficiency: Restructuring and approbation of the Ray-Osterrit technique “Complex figure”: methodical recommendations. St. Petersburg, 68.
Khokhlov Nikita A., Serdyuk. Alexandra E. (2019). Quantitative estimates of performance on the Taylor Complex Figure (TCF) by children aged 4-17 years. National Psychological Journal, 1, 88-108