Recieved: 08/16/2016
Accepted: 09/02/2016
Published: 11/30/2016
p.: 115-126
DOI: 10.11621/npj.2016.0314
Keywords: fatigue; cognitive load; EEG ; EEG data; the individual alpha rhythm; the fatigue index; spectral characteristics; dopamine
Available online: 30.11.2016
Polikanova, Irina S. , Korshunov, Alexey V., Leonov, S.V. , Veraksa, A.N.. Association to dopamine receptor D2 (DRD2) with developing fatigue as a result of long-term cognitive load. // National Psychological Journal 2016. 3. p.115-126. doi: 10.11621/npj.2016.0314
Copied to Clipboard
CopyThis research studies the effect of long-term cognitive load on developimg fatigue on a range of subjective, behavioural (reaction time) and electrophysiological (individual alpha rhythm), fatigue index parameters in carriers of various polymorphisms of DRD2 genes. Mental fatigue was modeled as a result of continuous cognitive tasks aimed at using attention and working memory for 2.5 hours.
The sample included 51 subjects (male right-handers, the average age - 20 ± 4 years) whose genetic analysis was conducted and polymorphism options of DRD2 gene Taq1A (A1A1, A1A2 and A2A2) were identified.
The research results show that such load significantly affects almost the entire complex of indicators. Significant differences were found between the polymorphisms carriers A1A1 and A1A2 and A2A2 of DRD2 gene polymorphism in the reaction of choice, and also in fatigue index, which reflects the ratio of slow brain rhythms to fast. The results show the positive role of dopamine in developing fatigue.
Group of A2A2 («A1») polymorphism carriers was assumed to show lower fatigue, characterized in SVMR and PB significantly slower reaction time, and before and after long-term cognitive load, compared with carriers of polymorphisms A1A1 and A1A2 (« A1 + «).
Notably, the dynamics of error increase within all polymorphisms is the same, and genotype number of errors does not vary before or after fatigue. The dynamics of reaction time after the exhaustion of all SNPs is approximately the same. This means that polymorphisms are different not only in dynamics of fatigue but physical predisposition to sensory information processing.
Table 1. HAM Method (DRD2)
|
Health |
Activity |
Mood |
Total |
A1+ |
5,4/4,4** |
5,1/4** |
5,4/5,2 |
5,3/4,5** |
A1- |
5,5/4,7** |
5/4,3** |
5,4/5,2 |
5,3/4,8** |
Before/After Fatigue, Scale: 1-7 points |
Table 2. Common Hand-Eye Response
DRD2 |
Before Fatigue, ms (st.dev.) |
After Fatigue, ms (st.dev) |
A1+ |
221,9 (16,4) |
227,6 (14,4) |
A1- |
232,3 (21,1) |
243,6 (30)* |
*Significant changes (p≤0,05)
Table 3. Choice Reaction
|
Response Time, ms |
Errors |
|
DRD2 |
Before Fatigue |
After Fatigue |
Before Fatigue |
A1+ |
400,2 (43,9) |
377,9 (44,9)** |
6,1 |
A1- |
430,1 (60,1) |
413,6 (59,5)* |
6,1 |
* Significant changes (p≤0,05);
** significant changes (p≤0,01)
Table 4. Maximum Tapping
DRD2 |
Before Fatigue, ms |
Before Fatigue, ms |
A1+ |
170(16) |
175(12) |
A1- |
175(18) |
172(19) |
Table 5. Index alpha frequency (IAF) Before/After Fatigue in DRD2
Brain Parts |
(IAF, Hz/ st.dev.) |
|||
«A1+» Group |
«A1-» группа |
|||
Before Fatigue |
After Fatigue |
Before Fatigue |
After Fatigue |
|
Left Lobe |
10,10 (0,88) |
9,53 (1,02)* |
9,63 (0,96) |
9,69 (1,01) |
Right Lobe |
10,06 (0,87) |
9,43 (1,06)* |
9,77 (0,96) |
9,72 (1,08) |
Central Left Lobe |
9,84 (0,70) |
9,45 (1,10) |
9,75 (0,98) |
9,77 (1,10) |
Central Right Lobe |
9,77 (0,79) |
9,30 (1,07)* |
9,73 (1,03) |
9,68 (1,03) |
Parietal Left Lobe |
9,89 (0,85) |
9,68 (0,97) |
9,96 (0,99) |
10,04 (1,04) |
Parietal Right Lobe |
10,23 (0,43) |
9,73 (0,74) |
10,10 (1,02) |
10,01 (0,99) |
Temporal Left Lobe |
9,96 (0,92) |
9,69 (1,14)* |
9,81 (0,95) |
9,73 (0,96) |
Temporal Right Lobe |
10,18 (0,51) |
9,60 (0,91)* |
9,89 (0,93) |
9,80 (0,96) |
Occipital Left Lobe |
10,14 (0,82) |
9,57 (0,77)* |
9,97 (1,05) |
9,90 (0,97) |
Occipital Right Lobe |
10,35 (0,53) |
9,69 (0,70)* |
10,01 (0,98) |
9,90 (0,90) |
* significant changes (p≤0,05);
** significant changes (p≤0,01)
Table 6. Fatigue Index Before/ after Fatigue in DRD2
Brain Parts |
(IAF, Hz/ st.dev.) |
|||
«A1+» Group |
«A1–»Group |
|||
Before Fatigue |
After Fatigue |
Before Fatigue |
After Fatigue |
|
Left Lobe |
3,72 (2,32) |
4,18 (2,82) |
4,65 (3,00) |
5,18 (3,15) |
Right Lobe |
6,31 (2,84) |
7,12 (3,32)* |
7,27 (2,65) |
7,77 (2,46) |
Central Left Lobe |
2,66 (1,40) |
3,27 (1,72) |
3,59 (2,81) |
4,36 (2,45) |
Central Right Lobe |
2,78 (1,34) |
4,16 (2,58)** |
3,62 (2,95) |
4,97 (2,57)** |
Parietal Left Lobe |
3,37 (2,91) |
4,42 (3,41) |
3,66 (3,09) |
5,31 (3,04)** |
Parietal Right Lobe |
4,58 (4,17) |
5,78 (5,02) |
5,00 (3,90) |
6,56 (3,89)** |
Temporal Left Lobe |
2,49 (1,38) |
3,96 (2,74)* |
3,26 (2,46) |
4,10 (2,33)* |
Temporal Right Lobe |
2,97 (3,25) |
3,92 (3,85)* |
3,24 (2,15) |
4,26 (2,70)* |
Occipital Left Lobe |
3,14 (2,40) |
4,44 (3,88)* |
3,97 (3,08) |
4,62 (2,57)* |
Occipital Right Lobe |
3,11 (2,63) |
4,38 (3,69)* |
3,56 (2,58) |
4,40 (2,27)* |
* significant changes (p≤0,05);
** significant changes (p≤0,01)
Angelakis, E., Lubar, J.F., Stathopoulou, S., & Kounios, J. (2004) Peak alpha frequency: an electroencephalographic measure of cognitive preparedness. Clin Neurophysiol. Apr; 115(4):887-97. doi: 10.1016/j.clinph.2003.11.034
Barnes, J.M., Dean, A.J., Nandam, L.S., & O’Connell, R.G. (2011) The Molecular Genetics of Executive Function: Role of Monoamine System Genes. Biological Psychiatry. Vol. 69, Issue 12, 127-143. doi: 10.1016/j.biopsych.2010.12.040
Binnie, C.D., Cooper, R., Mauguiere, F., Prior, P., & Tedman, B. (2003) Electroencephalography, Paediatric Neurophysiology, Special Techniques and Applications. Clinical Neurophysiology. Vol. 2.
Blomstrand, E. (2001) Amino acids and central fatigue. Amino Acids. Vol. 20, 25-34. doi: 10.1007/s007260170063
Blum, K., Braverman, E.R., Wu, S., Cull, J.G., Chen, T.J., & Gill, J. (1997) Association of polymorphisms of dopamine D2 receptor (DRD2), and dopamine transporter (DAT1) genes with schizoid/avoidant behaviors (SAB). Molecular Psychiatry. Vol. 2, 239-246. doi: 10.1038/sj.mp.4000261
Boksem, M.A., Meijman, T.F., & Lorist, M.M. (2006) Mental fatigue, motivation and action monitoring. Biol Psychol 72: 123–132. doi: 10.1016/j. biopsycho.2005.08.007
Bolton, J.L., Marioni, R.E., Deary, I.J., Harris, S.E., Stewart, M.C., Murray, G.D., Fowkes, F.G.R., & Price, J.F. (2010) Association between polymorphisms of the dopamine receptor D2 and catechol-o-methyl transferase genes and cognitive function. Behavior Genetics. Vol. 40, 630-638; doi: 10.1007/s10519-010- 9372-y
Cheng, Shyh-Yueh & Hsu, Hong-Te (2011) Mental Fatigue Measurement Using EEG, Risk Management Trends, Giancarlo Nota (Ed.), ISBN: 978-953- 307-314-9.
Davis, J.M., Alderson, N.L., & Welsh, R.S. (2000) Serotonin and central nervous system fatigue: nutritional considerations. The American Journal of Clinical Nutrition. Vol. 72, 573-8.
Davis, J.M., & Bailey, S.P. (1997) Possible mechanisms of central nervous system fatigue during exercise. Medicine and Science in Sport and Exercise. Vol. 29, 1, 45-57; doi: 10.1097/00005768-199701000-00008
Epstein, H.T. (1980) EEG developmental stages. Developmental Psychobiology. Vol. 13, 629–631. doi: 10.1002/dev.420130608
Farde, L., Gustavsson, J.P., & Jonsson, E. (1997) D2 dopamine receptors and personality traits. Nature; 385-590. doi: 10.1038/385590a0
Fernandez, T., Harmony, T., Rodriguez, M., Reyes, A., Marosi, E., & Bernal, J. (1993) Test–retest reliability of EEG spectral parameters during cognitive tasks: I. Absolute and relative power. International Journal of Neuroscience. Vol. 68, 255– 261. doi: 10.3109/00207459308994280
Fernstrom, J.D., & Fernstrom, M.H. (2006) Exercise, serum free tryptophan, and central fatigue. Journal of Nutrition. Vol. 136, 2, 553-559;
Foley, T.E., & Fleshner, M. (2008) Neuroplasticity of dopamine circuits after exercise: implications for central fatigue. NeuroMolecular Medicine. Vol. 10, 67-80; doi: 10.1007/s12017-008-8032-3
Goljahani, A., D’Avanzo, C., Schiff, S., Amodio, P., Bisiacchi, P., & Sparacino, G. (2012) A novel method for the determination of the EEG individual alpha frequency. Neuroimage. Vol. 60, 774-786. doi: 10.1016/j.neuroimage.2011.12.001
Golubeva, E.A. (2005) Abilities. Personality. Individuality. Dubna, «Fenix +», 512.
Gosso, M.F., de Geus, E.J.C., Polderman, T.J.C., Boomsma, D.I., Heutink, P., & Posthuma, D. (2008) Catechol O-methyl transferase and dopamine D2 receptor gene polymorphisms: evidence of positive heterosis and gene-gene interaction on working memory functioning. The American Journal of Human Genetics. Vol. 16, 1075-1082. doi: 10.1038/ejhg.2008.57
Jap, Budi Thomas, Lal, Sara, Fischer, Peter, & Bekiaris, Evangelos (2009) Using EEG spectral components to assess algorithms for detecting fatigue. Expert Systems with Applications. Volume 36, Issue 2, Part 1, 2352-2359.
Joyce, N.J., Sapp, D.W., & Marshall, J.F. (1986) Human striatal dopamine receptors are organized in compartments. PNAS. Vol. 83, 8002-8006. doi: 10.1073/pnas.83.20.8002
Kaasinen, V., Aalto, S., Nagren, K., & Rinne, J.O. (2004) Insular dopamine D2 receptors and novelty seeking personality in Parkinson’s disease. Movement Disorders. Vol. 19, 11, 1348-1351. doi: 10.1002/mds.20191
Khaustova, S.A., Shkurnikov, M.U., & Tonevitsky, A.G. (2010) Short highly intense exercise causes changes in salivary concentrations of hydrocortisone and secretory IgA. Bull. Exp. Biol. Med.. Vol. 149, 5, 635–9. doi: 10.1007/s10517-010-1012-2
Kidd, K.K., Morar, B., Castiglione, C.M., Zhao, H., Pakstis, A.J., & Speed, W.C. et al. (1998) A global survey of haplotype frequencies and linkage disequilibrium at the DRD2 locus. Human Genetics. Vol. 103, 2, 211-227. doi: 10.1007/s004390050809
Klimesch, W., Schimke, H., & Pfurtscheller, G. (1993) Alpha frequency, cognitive load and memory performance. Brain Topography, 5, 241-251. doi: 10.1007/BF01128991
Klimesch, W. (1996) Memory processes, brain oscillations and EEG synchronization. Int J Psychophysiol. doi: 10.1016/S0167-8760(96)00057-8
Klimesch, W. (1997) EEG-alpha rhythms and memory processes. International Journal of Psychophysiology. 26, 319-340. doi: 10.1016/S0167- 8760(97)00773-3
Klimesch, Wolfgang (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Research Reviews. 29,169–195. doi: 10.1016/S0165-0173(98)00056-3
Knight, J.L. (1974) Speed-accuracy tradeoff in double stimulation: Effects on the first response. Memory & Cognition, Vol. 2, 3, 522-532. doi: 10.3758/ BF03196915
Kropotov, Yu.D. (2010) Quantitative EEG, cognitive human-induced brain potentials and Neural. St. Petersburg, 506.
Lal, Sara & Bekiaris, Evangelos (2007) The Reliability of Sensing Fatigue from Neurophysiology. AusWireless 2006: International Conference on Wireless Broadband and Ultra Wideband Communications Proceedings. EEG-based Estimation of Cognitive Fatigue. URL.: http://hdl.handle.net/10453/19642 ). - (reference date: 09.08.2016)
Lorist, Monicque, Boksem, Maarten, Ridderinkhof, Richard (2005) Impaired cognitive control and reduced cingulate activity during mental fatigue. Cognitive Brain Research. 24, 199– 205; doi: 10.1016/j.cogbrainres.2005.01.018
Malyuchenko, N., Schegolkova, J., Kulikova, M., Timofeeva, M., Shlepzova, V., Sysoeva, O., Ivanitsky, A., & Tonevitsky, A. (2010) Effects of Genetic Variations in the Dopaminergic System on Fatigue in Humans: Gender Aspects. Bulletin of Experimental Biology and Medicine. Vol. 149, 226-232; doi: 10.1007/s10517-010-0913-4
Meeusen, R., & Watson, P. (2007) Amino acids and the brain: do they play a role in “central fatigue”? International journal of sport nutrition and exercise. Suppl. 17, 37-46;
Newsholme, E.A., & Blomstrand, E. (1995) Tryptophan 5-hydroxytryptamine and a possible explanation for central fatigue. Advances in Experimental Medicine and Biology. Vol. 384, 315-320; doi: 10.1007/978-1-4899-1016-5_25
Newsholme, E.A., Blomstrand, E., & Ekblom, B. (1992) Physical and mental fatigue: metabolic mechanisms and importance of plasma amino acids. British Medical Bulletin. Vol. 48, 477–95;
Nieoullon, André (2002) Dopamine and the regulation of cognition and attention. Progress in Neurobiology. Vol. 67, Issue 1, 53–83; doi: 10.1016/S0301- 0082(02)00011-4
Ollman, R. (1966) Fast guess in choice reaction time. Psychonomic Science. 6, 155-156; doi: 10.3758/BF03328004
Petersen, I., & Eeg-Olofsson, O. (1971) The development of the electroencephalogram in normal children from the age of 1 through 15 years – Non-paroxysmal activity. Neuropädiatrie. Vol. 2, 375–404; doi: 10.1055/s-0028-1091786
Polikanova, I.S., Sysoeva, O.V., & Tonevitsky, A.G. (2012) Association between serotonin transporter (5HTT) and mental fatigue development. Psikhologicheskie Issledovaniya, Vol. 5, 24, 7. http://psystudy.ru (in Russian, abstr. in English) - (reference date: 09.08.2016).
Reuter, M., Roth, S., Holve, K., & Hennig, J. (2006) Identification of first candidate genes for creativity: A pilot study. Brain Research. Vol. 1069, 190-197. doi: 10.1016/j.brainres.2005.11.046
Ritchie, T., & Noble, E.P. (2003) Association of seven polymorphisms of the D2 dopamine receptor gene with brain receptor-binding characteristics. Neurochemical Research. Vol. 28, 73-82; doi: 10.1023/A:1021648128758
Rodrigues, Julian, Mastaglia, Frank, & Thickbroom, Gary (2009) Rapid slowing of maximal finger movement rate: fatigue of central motor control? Exp Brain Res. doi: 10.1007/s00221-009-1886-2
Salamone, J.D. (2010a) Involvement of nucleus accumbens dopamine in behavioral activation and effort-related functions. In: Eds. Iversen L.L., Iversen S.D., Dunnett S.B., & Bjorkland A. Dopamine handbook. Oxford, UK, Oxford University Press.
Salamone. J.D. (2010b) Motor function and motivation. In: Eds. Koob, G., Le Moal, M., Thompson, R.F. Encyclopedia of behavioral neuroscience. Vol. 3. Oxford, Academic Press, 267–276. doi: 10.1016/B978-0-08-045396-5.00247-5
Salamone, J.D., Aberman, J.E., Sokolowski, J.D., & Cousins, M.S. (1999) Nucleus accumbens dopamine and rate of responding: Neurochemical and behavioral studies. Psychobiology. Vol. 27, 236-247.
Shkurnikov, M.U. et al. (2008) Free testosterone as marker of adaptation to medium-intensive exercise. Bull. Exp. Biol. Med. Vol. 146, 3, 354–7. doi: 10.1007/s10517-008-0292-2
Sternberg, Saul (2004) Reaction-Time Experimentation. Psychology 600-301/ Proseminar in Psychological Methods. Spring Semester.
Thompson, J. et al. (1997) D2 dopamine receptor gene (DRD2) TaqI A polymorphism: Reduced D2 receptor binding in the human striatum associated with the A1 allele. Pharmacogenetics. Vol. 7, 6, 479-484. doi: 10.1097/00008571-199712000-00006
Trejo, L., Knuth, K., Prado, R., Rosipal, R., Kubitz, K. Kochavi, R., Matthews, B., & Zhang, Y. (2007). EEG-Based Estimation of Mental Fatigue: Convergent Evidence for a Three-State Model. HCI International 2007 and Augmented Cognition International Conference, Beijing, 22-27 July 2007. In D.D. Schmorrow, & L.M. Reeves (Eds.), Augmented Cognition, HCII 2007, LNAI 4565, 201-211. New York: Springer LNCS.
Tsai, S.J., Yu, Y.W., Lin, C.H., Chen, T.J., Chen, S.P., & Hong, C.J. (2002) Dopamine D2 receptor and N-methyl-D-aspartate receptor 2B subunit genetic variants and intelligence. Neuropsychobiology. Vol. 45, 128-1. doi: 10.1159/000054951
Trejo, L., Knuth, K., Prado, R., Rosipal, R., Kubitz, K. Kochavi, R., Matthews, B., & Zhang, Y. (2007). EEG-Based Estimation of Mental Fatigue: Convergent Evidence for a Three-State Model. HCI International 2007 and Augmented Cognition International Conference, Beijing, 22-27 July 2007. In D.D. Schmorrow, & L.M. Reeves (Eds.), Augmented Cognition, HCII 2007, LNAI 4565, 201-211. New York: Springer LNCS. doi: 10.1007/978-3-540-73216-7_23
Wickelgren, Wayne (1977) Speed-accuracy tradeoff and information processing dynamics. Acta Psychologica. Volume 41, Issue 1, February 1977, 67–85; doi: 10.1016/0001-6918(77)90012-9
Wijesuriya, Nirupama, Tran, Yvonne, Craig, Ashley (2007) The psychophysiological determinants of fatigue. Int J Psychophysiol. doi: 10.1016/j. ijpsycho.2006.08.005
Wood, C.C., & Jennings, J.R. (1976) Speed-accuracy tradeoff functions in choice reaction time: Experimental designs and computational procedures. Perception & Psychophysics. Vol. 19, 92-102; doi: 10.3758/BF03199392
Yellott, John (1971) Correction for fast guessing and the speed-accuracy tradeoff in choice reaction time, Journal of Mathematical Psychology. 8, 159-199. doi: 10.1016/0022-2496(71)90011-3
Zinchenko, Yu.P., Tonevitsky, A.G., Veraksa, A.N., Isaichev, S.A., Leonov, S.V., Menshikova, G.Ya., Strelkov, Yu.K., Sysoev, O.V., & Chernorizov, A.M. (2011) Sports Psychology. Moscow, Izdatel’stvo Moskovskogo Universiteta.
Polikanova, Irina S. , Korshunov, Alexey V., Leonov, S.V. , Veraksa, A.N.. Association to dopamine receptor D2 (DRD2) with developing fatigue as a result of long-term cognitive load. // National Psychological Journal 2016. 3. p.115-126. doi: 10.11621/npj.2016.0314
Copied to Clipboard
Copy