Recieved: 08/19/2024
Accepted: 12/20/2024
Published: 02/12/2025
Keywords: anxiety; stress; electroencephalography (EEG); alpha asymmetry; alpha rhythm; beta rhythm
Pages: 75-85
DOI: 10.11621/npj.2025.0107
Available online: 12.02.2025
Leonteva, A.D., Zubarev, A.S. (2025). Anxiety and Neurophysiological Markers: Mobile EEG Analysis. National Psychological Journal, 20(1) , 75-85. https://doi.org/10.11621/npj.2025.0107
Copied to Clipboard
CopyBackground. There is a need to develop more advanced methods for diagnosing and correcting anxiety, as currently a significant number of people experience this condition.
Objective. This paper examines the relationship between the power ratio of beta and alpha rhythms (concentration index), alpha asymmetry in the temporal lobes, the subjective level of personal anxiety and stress levels in a calm state and under conditions of cognitive load.
Study Participants.The study involved 38 healthy subjects aged 21 to 47 years (Md = 23.0, SD = 7.99, 24 women).
Methods.To determine the level of anxiety, the subjects filled out questionnaires: the Spielberger — Hanin Anxiety Scale and the Pennsylvania Anxiety Questionnaire. The electrical activity of the brain was recorded using the Neiry Headband Pro electroencephalograph. Cognitive load is induced using the Stroop verbal colour test and its modifications. Statistical data processing was carried out using descriptive statistics tools. Spearman’s correlation coefficient and Wilcoxon’s T-test were analyzed.
Results. It was found that the higher the subjective estimates of anxiety are, the weaker the concentration index increases at the stages with cognitive tasks. Also, in the presence of left-sided alpha asymmetry in the background, there is an increase in the subjective stress level at subsequent stages with cognitive load.
Conclusions.Mobile neurophysiological measurements can be an effective tool for the development of early diagnosis methods and an individualized approach to the treatment of anxiety disorders.
Aftanas, D.I. (2000). Human emotional space. Novosibirsk: Siberian Branch of the Russian Academy of Medical Sciences. (In Russ.)
Alonso, J.F., Romero, S., Ballester, M.R., Antonijoan, R.M., Mañanas, M.Á. (2015). Stress assessment based on EEG univariate features and functional connectivity measures. Physiological Measurement, 36(7), 1351. https://doi.org/10.1088/0967-3334/36/7/1351
Bayard, S., Erkes, J., Moroni, C. (2011). Victoria Stroop Test: normative data in a sample group of older people and the study of their clinical applications in the assessment of inhibition in Alzheimer’s disease. Archives of Clinical Neuropsychology, 26(7), 653−661. https://doi.org/10.1093/ arclin/acr053
Bazanova, O.M., Vernon, D. (2014). Interpreting EEG alpha activity. Neuroscience & Biobehavioral Reviews, (44), 94–110. https://doi.org/10.1016/j.neubiorev.2013.05.007
Berretz, G., Packheiser, J., Wolf, O.T., Ocklenburg, S. (2022). Acute stress increases left hemispheric activity measured via changes in frontal alpha asymmetries. Iscience, 25(2), 103841. https://doi.org/10.1016/j.isci.2022.103841
Dzhebrailova, T.D., Korobeinikova, I.I., Karatygin, N.A., Biryukova, E.V., Venerina, Y.A. (2021). Dynamics of EEG spectral characteristics in subjects with various trait anxiety levels performing cognitive tests. Human Physiology, 47(1), 14–22. http://doi.org/10.1134/S0362119721010035
Ehrhardt, N.M., Fietz, J., Kopf-Beck, J., Kappelmann, N., Brem, A.K. (2021). Separating EEG correlates of stress: Cognitive effort, time pressure, and social-evaluative threat. European Journal of Neuroscience, 55(9–10), 2464–2473. https://doi.org/10.1111/ejn.15211
Gabdreeva, G.Sh., Prokhorov, A.O. (2004). State Psychology Workshop. St. Petersburg: Rech Publ. (In Russ.)
Gabdulkhakova, M.V. (2020). Development and testing of the Russian-language version of “The Penn State Worry Questionnaire” (PSWQ). Fourteenth International Scientific and Practical Conference for Students, Undergraduates, Graduate Students, Young Scientists and University Teachers (February 20–21, 2020). (pp. 106–108). (In Russ.). URL: https://dspace.kpfu.ru/xmlui/handle/net/158766 (accessed: 18.04.2024).
Giannakakis, G., Grigoriadis, D., Tsiknakis, M. (2015). Detection of stress/anxiety state from EEG. URL: https://few.com/neuroreport/abstract/ 2004/12220/neural_correlates_of_speech_anticipatory_anxiety.3.aspx (accessed: 01.05.2024).
McClure, E.B., Monk, C.S., Nelson, E.E., Parrish, J.M., Adler, A., Blair, R.J.R., Pine, D.S. (2007). Abnormal Attention Modulation of Fear Circuit Function in Pediatric Generalized Anxiety Disorder. Archives of General Psychiatry, 64(1), 97–106. https://doi.org/10.1001/archpsyc.64.1.97
Mennella, R., Patron, E., Palomba, D. (2017). Frontal alpha asymmetry neurofeedback for the reduction of negative affect and anxiety. Behaviour Research and Therapy, (92), 32−40. https://doi.org/10.1016/j.brat.2017.02.002
Meyer, T., Smeets, T., Giesbrecht, T., Quaedflieg, C.W., Smulders, F.T., Meijer, E.H., Merckelbach, H.L. (2015). The role of frontal EEG asymmetry in post-traumatic stress disorder. Biological Psychology, (108), 62−77. https://doi.org/10.1016/j.biopsycho.2015.03.018
Pashkov, A.A., Dakhtin, I.S., Kharisova, N.S. (2017). Electroencephalographic biomarkers of experimentally induced stress. Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya Psikhologiya = Bulletin of South Ural State University, Psychology Series, 10(4), 68–82. (In Russ.). https://doi.org/10.14529/psy170407
Pavlenko, V.B., Chernyi, S.V., Goubkina, D.G. (2009). EEG correlates of anxiety and emotional stability in adult healthy subjects. Neurophysiology, 41(5), 337–345. https://doi.org/10.1007/s11062-010-9111-2
Perez-Cano, H.J., Moreno-Murguia, M.B., Morales-Lopez, O., Crow-Buchanan, O., English, J.A., Lozano-Alcazar, J., Somilleda-Ventura, S.A. (2020). Anxiety, depression, and stress in response to the coronavirus disease-19 pandemic. Cirugía y Cirujanos, 88(5), 562−568. https://doi.org/10.24875/CIRU.20000561
Riera, A., Soria-Frisch, A., Albajes-Eizagirre, A., Cipresso, P., Grau, C., Dunne, S., Ruffini, G. (2012). Electro-Physiological Data Fusion for Stress Detection. Annual Review of Cybertherapy and Telemedicine, (181), 228–232. https://doi.org/10.3233/978-1-61499-121-2-228
Smitha, K.G., Xin, N.Y., Lian, S.S., Robinson, N. (2017). Classifying subjective emotional stress response evoked by multitasking using EEG. IEEE International Conference on Systems, Man and Cybernetics (SMC) (October 5−8, 2017). (pp. 3036–3041). https://doi.org/10.1109/ SMC.2017.8123091
Zhang, X., Bachmann, P., Schilling, Т., Naumann, E., Schächinger, H., Larra, M. (2018). Emotional stress regulation: The role of relative frontal alpha asymmetry in shaping the stress response. Biological Psychology, (138), 231–239. https://doi.org/10.1016/j.biopsycho.2018.08.007
Leonteva, A.D., Zubarev, A.S.. Anxiety and Neurophysiological Markers: Mobile EEG Analysis. // National Psychological Journal 2025. 1. Pages75-85. doi: 10.11621/npj.2025.0107
Copied to Clipboard
Copy