ISSN 2079-6617 (Print)
ISSN 2309-9828 (Online)
Articles

Article

MainArticlesVolumes

Khokhlov N.A., Kovyazina M.S. (2016). The role of crossmodal interaction in psychological and brain organization of mathematical abilities. National Psychological Journal. 4, 59-70.

Abstract

The paper analyzes the work of Russian and foreign scholars devoted to the role of cross analyzer cooperation in developing and implementing mathematical abilities. Crossmodal interaction is considered as an additional category of neuropsychological analysis that allows to extend the existing ideas about the psychological structure and brain providing the mathematical ability. There are data that confirm the relevance of studying the interaction of the senses. Many of the research on this issue are carried out using the synesthesia which is considered a rare phenomenon. However, both Russian and foreign works suggest that the interaction of analyzers is not characteristic only to those whose brain is synesthetic. The joint work of the senses is characteristic of every person since his/her childhood, and is an obligatory condition for cognitive processes.

Cross analyzer synthesis is assumed to play an important role in producing spatial representations and the ability to intuitively perceive the notion of quantity (evolutionary foundations of mathematical ability). On the brain level, these processes are provided primarily by functioning of parietal and tertiary cortical areas located at the junction of cortical analyzer areas and also temporal areas that border on the parahippocampal brain area.

When dealing with school mathematics the structure of mathematical abilities is changing due to verbal and symbolic representations of numerical coding. Dealing with symbols opens up new opportunities, but it also narrows the spectrum of modalities involved in doing mathematical sums. Thus, the ability to re-encode information from one modality to another after school mathematics is perceived has an impact on the efficacy of mathematical activity. Doing mathematical sums is accompanied by crossmodal interaction that occurs on the unconscious level.

Some problem conditions may be efficiently processed in one modality, others may be solved in other modality.

Apparently, the ability to various crossmodal re-encoding patterns varies considerably from person to person. The effectiveness of crossmodal interactions may determine the severity of certain components of mathematical abilities and influence successful solutions of the corresponding types of mathematical problems.

Received: 11/16/2016
Accepted: 11/23/2016
Pages: 59-70
DOI: 10.11621/npj.2016.0408

Sections: Neuropsychology;

PDF: Download

Keywords: mathematical ability; cross analyzer interaction; senses interaction; synesthesia; crossmodal re-encoding; spatial conceptions; differential neuropsychology;

Available Online 30.12.2016

References:

Akhutina, T.V., Manelis, N.G., & Pylaeva, N.M et al. (2007) School is soon. A journey with Bim and Bom to the world of Mathematics: school preparation guide for children. Moscow, Terevinf, Genesis, 32.

Akhutina, T.V., & Pylaeva, N.M. (2015) Overcoming learning difficulties: Neuropsychological approach: manual for higher school. Moscow, Akademiya, 288.

Ananiev, B.G. (1996) Psychology and issues anthropology. Moscow, Izdatel’stvo «Institut prakticheskoy psikhologii», Voronezh: NPO «MODEK», 384.

Arend, I., Gertner, L., & Henik, A. (2013) Perceiving numbers influences actions in number-space synesthesia. Cortex. Vol. 49 (7), 1955-1962. doi: 10.1016/j.cortex.2012.04.019

Ayres, A.J. (1979) Sensory Integration and the Child. Los Angeles: Western Psychological Association, 191.

Balashova, E.Yu, & Kovyazina, M.S. (2006) Research on optical-spatial functions normally. [Zhurnal prikladnoy psikhologii]. 6 (1), 36-44.

Baxter, M.G. (2009) Involvement of medial temporal lobe structures in memory and perception. Neuron. V. 61 (5), 667-677. doi: 10.1016/j. neuron.2009.02.007

Berezina, T.N. (2012) Mental images of the highest order: the word as sound and meaning. [Pedagogika i psikhologiya obrazovaniya]. 4, 71.

Brogaard, B., Vanni, S., & Silvanto, J. (2013) Seeing mathematics: perceptual experience and brain activity in acquired synesthesia. Neurocase. Vol. 19 (6), 566-575. doi: 10.1080/13554794.2012.701646

Catani, M., & de Schotten, M.T. (2012) Atlas of Human Brain Connections. New York, Oxford University Press, 519. doi: 10.1093/ med/9780199541164.001.0001

Changizi, M. (2015) Revolution in vision: what, how and why we see in reality. Moscow, AST, CORPUS, 304.

Cohen, Kadosh, R., & Henik, A. (2008) Color congruity effect: where do colors and numbers interact in synesthesia? Cortex. Vol. 42 (2), 259-263.

Crollen, V., & Noël, M.P. (2015) Spatial and numerical processing in children with high and low visuospatial abilities. Journal of Experimental Child Psychology. Vol. 132, 84-98. doi: 10.1016/j.jecp.2014.12.006

Cutini, S., Scarpa, F., Scatturin, P., Dell’Acqua, R., & Zorzi, M. (2014) Number-space interactions in the human parietal cortex: Enlightening the SNARC effect with functional near-infrared spectroscopy. Cerebral Cortex. Vol. 24 (2), 444-451. doi: 10.1093/cercor/bhs321

Cytowic, R.E. (2002) Synesthesia: A Union of the Senses. 2nd ed. Cambridge, Massachusetts, MIT Press, 424.

Dehaene, S., Bossini, S., & Giraux, P. (1993) The mental representation of parity and number magnitude. Journal of Experimental Psychology. Vol. 122 (3), 371-396. doi: 10.1037/0096-3445.122.3.371

Eagleman, D.M. (2009) The objectification of overlearned sequences: a new view of spatial sequence synesthesia. Cortex. Vol. 45 (10), 1266-1277. doi: 10.1016/j.cortex.2009.06.012

Feigenson, L. (2011) Predicting sights from sounds: 6-month-olds’ intermodal numerical abilities. Journal of Experimental Child Psychology. Vol. 110 (3), 347-361. doi: 10.1016/j.jecp.2011.04.004

Fischer, M.H., & Shaki, S. (2014) Spatial associations in numerical cognition – from single digits to arithmetic. Quarterly journal of experimental psychology. Vol. 67 (8), 1461-1483.

Foer, J. (2012) Moonwalking with Einstein: The Art and Science of Remembering Everything. London, Penguin Books, 307. doi: 10.1080/17470218.2014.927515

Fyhn, M., Molden, S., Witter, M.P., Moser, E.I., & Moser, M.B. (2004) Spatial representation in the entorhinal cortex. Science. Vol. 305 (5688), 1258-1264. doi: 10.1126/science.1099901

Galton, F. (1880) Visualised numerals. Nature. Vol. 21, 252-256, 494-495. doi: 10.1038/021494e0

Galton, F. (1881) The visions of sane persons. Proceedings of the Royal Institution. Vol. 9, 644-655.

Gertner, L., Arend, I., & Henik, A. (2013) Numerical synesthesia is more than just a symbol-induced phenomenon. Frontiers in Psychology. Vol. 4. A. 860. doi: 10.3389/fpsyg.2013.00860

Ghirardelli, T.G., Mills, C.B., Zilioli, M.K., Bailey, L.P., & Kretschmar, P.K. (2010) Synesthesia affects verification of simple arithmetic equations. The Journal of general psychology. Vol. 137 (2), 175-189. doi: 10.1080/00221301003645152

Graham, K.S., & Gaffan, D. (2005) The role of the medial temporal lobe in memory and perception: evidence from rats, nonhuman primates and humans. The Quarterly Journal of Experimental Psychology. B: Comparative and Physiological Psychology. Vol. 58 (3-4), 193-201. doi: 10.1080/02724990544000059

Green, J.A., & Goswami, U. (2008) Synesthesia and number cognition in children. Cognition. Vol. 106 (1), 463-473. doi: 10.1016/j.cognition.2007.01.013

Hale, J., Thompson, J.M., Morgan, H.M., Cappelletti, M., & Kadosh, R.C. (2014) Better together? The cognitive advantages of synaesthesia for time, numbers, and space. Cognitive Neuropsychology. Vol. 31 (7-8), 545-564. doi: 10.1080/02643294.2014.967759

Hochel, M., & Milán, E.G. (2008) Synaesthesia: the existing state of affairs. Cognitive neuropsychology. Vol. 25 (1), 93-117. doi: 10.1080/02643290701822815

Hubbard, E.M., Pinel, P., Piazza, M., & Dehaene, S. (2005) Interactions between numbers and space in parietal cortex. Nature Reviews Neuroscience. Vol. 6, 435-448. doi: 10.1038/nrn1684

Khokhlov, N.A. (2015) Mathematics (arithmetic, algebraic, geometric) ability test «MAAGS-2015». Moscow, Genesis, 80.

Khokhlov N.A., & Kovyazina M.S. (2016). Lateral signs and their interaction as a factor in the severity of mathematical abilities in adolescence. [Natsional’nyy psikhologicheskiy zhurnal], 3, 97-113. doi: 10.11621/npj.2016.0313

Kiselev, N.A. (1967) Mathematics and reality. Moscow, Izdatel’stvo Moskovskogo universitetata, 124.

Kiessling, W. (2011) Sensory Integration in the conversation: to perceive a child, to recognize the problem, to help find a balance. Moscow, Terevinf, 240.

Knops, A., & Willmes, K. (2014) Numerical ordering and symbolic arithmetic share frontal and parietal circuits in the right hemisphere. NeuroImage. Vol. 84, 786-795. doi: 10.1016/j.neuroimage.2013.09.037

Kotova, I.B., & Kravkov, S.V. (1982) As psychologist and psychophysiologist. [Voprosy psikhologii]. 4, 50-60.

Kovyazina, M.S. (2012) Neuropsychological analysis of the corpus callosum pathology. Moscow, Genesis, 176.

Kravkov, S.V. (1948) The interaction of sensory organs. Moscow, Leningrad, AN SSSR, 128.

Krisztián, Á., Bernáth, L., Gombos, H., & Vereczkei, L. (2015) Developing numerical ability in children with mathematical difficulties using origami. Perceptual and motor skills. Vol. 121 (1), 233-243. doi: 10.2466/24.10.PMS.121c16x1

Kuznetsova, E.A. (2004) Treatise on synesthesia. Kazan, Kazanskiy gosudarstvennyy universitet im. V.I. Ul’yanova-Lenina, 123.

Leushina, A.M. (1974) Develpoment of elementary mathematical concepts in preschool children. Moscow, Prosveshhenie.

Luria, A.R. (1996) Romantic essays. Moscow, Pedagogika-Press, 240.

Luria, A.R. (2003) Basics of neuropsychology: manual. Moscow, Akademiya, 384.

Luria, A.R. (2006) Lectures on general psychology. St. Petersburg, Piter, 320.

Luria, A.R., & Tsvetkova, L.S. (2010) Neuropsychological analysis of problem solving: manual. Moscow, MPSI, Voronezh MODEK, 368.

Lyons, I.M., & Ansari, D. (2015) Foundations of children’s numerical and mathematical skills: the roles of symbolic and nonsymbolic representations of numerical magnitude. Advances in Child. 93-116. doi: 10.1016/bs.acdb.2014.11.003

McCarthy, J.D., Barnes, L.N., Alvarez, B.D., & Caplovitz, G.P. (2013) Two plus blue equals green: grapheme-color synesthesia allows cognitive access to numerical information via color. Consciousness and Cognition. Vol. 22 (4), 1384-1392. doi: 10.1016/j.concog.2013.09.005

Matejko, A.A., & Ansari, D. (2016) Trajectories of Symbolic and Nonsymbolic Magnitude Processing in the First Year of Formal Schooling. PLoS One. Vol. 11 (3). doi: 10.1371/journal.pone.0149863. doi: 10.1371/journal.pone.0149863

(Eds.) Meshcheryakov, B.G., & Zinchenko, V.P. (2009) Big psychological dictionary. Moscow, AST, AST MOSKVA, St. Petersburg, Praym EVROZNAK, 811.

Mills, C.B., Metzger, S.R., Foster, C.A., Valentine-Gresko, M.N., & Ricketts, S. (2009) Development of color-grapheme synesthesia and its effect on mathematical operations. Perception. Vol. 38 (4), 591-605. doi: 10.1068/p6109

Nemov, R.S. (2015) General Psychology. Cognitive processes and mental states: textbook. Vol. 2. Moscow, Yurayt, 1007. doi: 10.1177/1073858409333073

Piazza, M., & Izard, V. (2009) How humans count: numerosity and the parietal cortex. Neuroscientist. Vol. 15 (3), 261-273.

Prokofiev, L.P. (2010) Synesthesia in the modern scientific paradigm. [Izvestiya Saratovskogo universiteta]. Vol. 10. Series Philology. Journalism. Vol. 1, 3-10.

Ramachandran, V.S., & Hubbard, E.M. (2001) Synaesthesia – a window into perception, thought and language. Journal of Consciousness Studies. Vol. 8 (12), 3-34.

Riccò, D, de Córdoba Serrano, M.J., & Day, S.A. (2014) Theoretical, artistic and scientific foundations. Granada: Ediciones Fundación Internacional ArteCittà, 372.

Robertson, L.C., & Sagiv, N. (2004) Synesthesia: Perspectives from Cognitive Neuroscience. Oxford, Oxford University Press, 304.

Rouw, R., Scholte, H.S., & Colizoli, O. (2011) Brain areas involved in synaesthesia: a review. Journal of neuropsychology. Vol. 5 (2), 214-242. doi: 10.1111/j.1748-6653.2011.02006.x

Sagiv, N., & Ward, J. (2006) Crossmodal interactions: lessons from synesthesia. Progress in Brain Research. Vol. 155, 259-271. doi: 10.1016/S0079- 6123(06)55015-0

Shepovalnikov, A.N., Tsitseroshin, M.N., & Pogosyan, A.A. (1997) On the role of various cortical areas and their connections in making spatial ordering of the brain area biopotentials in postnatal ontogenesis. [Fiziologiya cheloveka]. Vol. 23, 2, 12-24. doi: 10.1348/000712610X528305

Simner, J. (2012) Defining synaesthesia. British journal of psychology. Vol. 103 (1), 1-15.

Simon, J.R., & Wolf, J.D. (1963) Choice reaction time as a function of angular stimulus-response correspondence and age. Ergonomics. Vol. 6 (1), 99-105. doi: 10.1080/00140136308930679

Starr, A., Libertus, M.E., & Brannon, E.M. (2013) Number sense in infancy predicts mathematical abilities in childhood. PNAS. Vol. 110 (45), 18116- 18120. doi: 10.1073/pnas.1302751110

Suzuki, W.A. (2009) Perception and the medial temporal lobe: evaluating the current evidence. Neuron. Vol. 61 (5), 657-666. doi: 10.1016/j. neuron.2009.02.008

Suzuki, W.A., & Baxter, M.G. (2009) Memory, perception, and the medial temporal lobe: a synthesis of opinions. Neuron. Vol. 61 (5), 678-679. doi: 10.1016/j.neuron.2009.02.009

Suzuki, W.A., Miller, E.K., & Desimone, R. (1997) Object and place memory in the macaque entorhinal cortex. Journal of Neurophysiology. Vol. 78 (2), 1062-1081.

Thompson, J.M., Nuerk, H.-C., Moeller, K., & Cohen Kadosh, R. (2013) The link between mental rotation ability and basic numerical representations. Acta Psychologica. Vol. 144 (2), 324-331. doi: 10.1016/j.actpsy.2013.05.009

Uspenskiy, V.A. (2011) Mathematics apology. St. Peterburg, Amphora, 554.

Van Campen, C. (2007) The Hidden Sense. Synesthesia in Art and Science. Cambridge, MIT Press, 198.

Vekker, L.M. (2000) Mind and Reality: a unified theory of psychological processes. Moscow, Smysl, PerSe, 685.

Velichkovsky, B.M., & Zinchenko, V.P., & Luria, A.R. (1973) The psychology of perception. Moscow Izdatel’stvo Moskovskogo universitetata, 247.

Ward, J. (2013) Synesthesia. Annual Review of Psychology. Vol. 64, 49-75.

Wei, W., Yuan, H., Chen, C., & Zhou, X. (2012) Cognitive correlates of performance in advanced mathematics. British Journal of Educational Psychology. Vol. 82 (1), 157-181. doi: 10.1111/j.2044-8279.2011.02049.x

Wei, W., Chen, C., Yang, T., Zhang, H., & Zhou, X. (2014) Dissociated neural correlates of quantity processing of quantifiers, numbers, and numerosities. Human Brain Mapping. Vol. 35 (2), 444-454. doi: 10.1002/hbm.22190

Witter, M.P., Wouterlood, F.G., Naber, P.A., & Van Haeften, T. (2000) Anatomical organization of the parahippocampal-hippocampal network. Annals of the New York Academy of Sciences. Vol. 911, 1-24. doi: 10.1111/j.1749-6632.2000.tb06716.x

Zelenin, E.O. (2010) Synesthesia as an issue of musical education pedagogy and training: the development of audio-visual intermodal associations. St. Petersburg, Asterion, 174.

Zhang, S.J., Ye, J., Couey, J.J., Witter, M., Moser, E.I., & Moser, M.B. (2014) Functional connectivity of the entorhinal-hippocampal space circuit. Philosophical Transactions of the Royal Society B: Biological Sciences. Vol. 369 (1635): 20120516. doi: 10.1098/rstb.2012.0516

For citing this article:

Khokhlov N.A., Kovyazina M.S. (2016). The role of crossmodal interaction in psychological and brain organization of mathematical abilities. National Psychological Journal. 4, 59-70.