ISSN 2079-6617
eISSN 2309-9828
Attenuation of alpha-rhythm cardiosynchrony during subjective estimation of a minut

Attenuation of alpha-rhythm cardiosynchrony during subjective estimation of a minut

PDF (Rus)

Recieved: 12/03/2022

Accepted: 04/07/2023

Published: 06/17/2023

Keywords: time perception; interoceptive sensitivity; cardiosynchrony; alpha-­rhythm; heart-beat evoked response (HEP); inter-­trial coherence (ITC); electroencephalography (EEG)

p.: 129–143

DOI: 10.11621/npj.2023.0210

Available online: 17.06.2023

To cite this article:

Slovenko Ekaterina D., Dina G. Mitiureva, Olga V. Sysoeva. Attenuation of alpha-rhythm cardiosynchrony during subjective estimation of a minut. // National Psychological Journal 2023. 2. p.129–143. doi: 10.11621/npj.2023.0210

Copied to Clipboard

Copy
Issue 2, 2023

Slovenko Ekaterina D. Lomonosov Moscow State University

Dina G. Mitiureva The Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences

Olga V. Sysoeva The Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences

Abstract

Background. Interoception can serve as the basis for time perception. This assumption is supported with a considerable overlap between the brain structures that are involved in processing of interoceptive information and estimation of time duration. However, the psychophysiological mechanisms of interoceptive information integration during time perception remain largely unexplored. 

Objective. Analysis of the relationships between individual interoceptive sensitivity to heartbeats, evoked brain activity associated with the heartbeat, and time perception. 

Sample. The study involved 21 volunteers. 

Methods. The experimental procedure with EEG and photoplethysmogram recording included 5 experimental conditions: counting heartbeats at the specified time intervals, a resting state, and measuring a subjective minute with closed and open eyes. The epochs of recorded brain activity were defined upon the R-wave of the cardiogram. Global field power (GFP) indicators and coherence in the frequency range of the alpha rhythm were calculated. 

Results. The duration of the subjective minute did not correlate with either the perceived number of heart beats or the objective heart rate. There was also no relation between time and heart rate estimation accuracy. GFP analysis revealed a typical slow shift in brain activity, associated with heartbeat, however, it did not show a connection with the process of measuring duration, though it reacted to closing the eyes. At the same time, a decrease in the phase synchronization of the alpha rhythm relative to the heartbeat was detected while duration reproduction in comparison with resting-state. In addition, the degree of this alpha-­rhythm cardiosynchrony is negatively correlated with the magnitude of discrepancy between the subjective and objective minute. 

Conclusion. Thus, although there was no relationship between the interoceptive sensitivity to heartbeating and time perception on behavioral level, our study is the first to show that the subjective minute estimation is associated with alpha-­rhythm desynchronisation in relation to heartbeats with this desynchronization being linked to enhanced accuracy of time estimations. Overall, the results obtained complement the existing ideas about the relationship between the time perception and interoceptive signaling.


References

Adolfi, F., Couto, B., Richter, F., Decety, J., Lopez, J., Sigman, M., Manes, F., & Ibáñez, A. (2017). Convergence of interoception, emotion, and social cognition: A twofold fMRI meta-analysis and lesion approach. Cortex, 88, 124–142. https://doi.org/10.1016/j. cortex.2016.12.019 

Coll, M.-P., Hobson, H., Bird, G., & Murphy, J. (2021). Systematic review and meta-analysis of the relationship between the heartbeat-­evoked potential and interoception. Neuroscience & Biobehavioral Reviews, 122, 190–200. https://doi.org/10.1016/j. neubiorev.2020.12.012 

Craig (Bud), A.D. (2005). Forebrain emotional asymmetry: A neuroanatomical basis? Trends in Cognitive Sciences, 9 (12), 566– 571. https://doi.org/10.1016/j.tics.2005.10.005 

Craig (Bud), A.D. (2009). Emotional moments across time: A possible neural basis for time perception in the anterior insula. Philosophical Transactions of the Royal Society B: Biological Sciences, 364 (1525), 1933–1942. https://doi.org/10.1098/rstb.2009.0008 

Damasio, A.R., Grabowski, T.J., Bechara, A., Damasio, H., Ponto, L.L.B., Parvizi, J., & Hichwa, R.D. (2000). Subcortical and cortical brain activity during the feeling of self-generated emotions. Nature Neuroscience, 3, 1049–1056. https://doi.org/10.1038/79871 

Di Lernia, D., Serino, S., Pezzulo, G., Pedroli, E., Cipresso, P., & Riva, G. (2018). Feel the time. Time perception as a function of interoceptive processing. Frontiers in Human Neuroscience, 12, 74. 

Goldman, R.I., Stern, J.M., Engel, J., & Cohen, M.S. (2002). Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport, 13 (18), 2487–2492. https://doi.org/10.1097/01.wnr.0000047685.08940.d0 

Gramfort, A., Luessi, M., Larson, E., Engemann, D.A., Strohmeier, D., Brodbeck, C., Goj, R., Jas, M., Brooks, T., & Parkkonen, L. (2013). MEG and EEG data analysis with MNE-Python. Frontiers in Neuroscience, 7,267. 

Jamin, T., Joulia, F., Fontanari, P., Bonnon, M., Ulmer, C., & Crémieux, J. (2004). Effet d’une situation d’apnée statique sur les capacités individuelles d’estimation du temps Effect of a static apnea exposure on time estimation ability. Science & Sports, 19, 142–144. 

Jann, K., Dierks, T., Boesch, C., Kottlow, M., Strik, W., & Koenig, T. (2009). BOLD correlates of EEG alpha phase-­locking and the fMRI default mode network. NeuroImage, 45 (3), 903–916. https://doi.org/10.1016/j.neuroimage.2009.01.001 

Kaplan, A. Ya., Shishkin, S.L. (1992). Cardiosynchronous Phenomena of the Brain: Psychophysiological Aspects. Biologicheskie nauki (Biological Sciences), 10, 5–24. (In Russ.). 

Kononowicz, T.W., van Rijn, H. (2015). Single trial beta oscillations index time estimation. Neuropsychologia, 75, 381–389. https://doi.org/10.1016/j.neuropsychologia.2015.06.014 

Matell, M.S., Meck, W.H. (2004). Cortico-­striatal circuits and interval timing: Coincidence detection of oscillatory processes. Cognitive Brain Research, 21 (2), 139–170. https://doi.org/10.1016/j.cogbrainres.2004.06.012 

Meissner, K., Wittmann, M. (2011). Body signals, cardiac awareness, and the perception of time. Biological Psychology, 86 (3), 289–297. https://doi.org/10.1016/j.biopsycho.2011.01.001 

Menon, V. (2015). Salience Network. In A.W. Toga (Eds.), Brain Mapping (pp. 597–611). Waltham: Academic Press. https://doi. org/10.1016/B978–0–12–397025–1.00052-X 

Ogden, R.S., Henderson, J., McGlone, F., & Richter, M. (2019). Time distortion under threat: Sympathetic arousal predicts time distortion only in the context of negative, highly arousing stimuli. PLOS ONE, 14 (5), e0216704. https://doi.org/10.1371/journal. pone.0216704 

Park, H.-D., Bernasconi, F., Salomon, R., Tallon-­Baudry, C., Spinelli, L., Seeck, M., Schaller, K., & Blanke, O. (2018). Neural Sources and Underlying Mechanisms of Neural Responses to Heartbeats, and their Role in Bodily Self-consciousness: An Intracranial EEG Study. Cerebral Cortex, 28 (7), 2351–2364. https://doi.org/10.1093/cercor/bhx136 

Pigarev, I.N. (2013). Visceral theory of sleep. Zhurnal vysshei nervnoi deyatel’nosti im. I.P. Pavlova (I.P. Pavlov Journal of Higher Nervous Activity), 63 (1), 86–104. (In Russ.). 

Pollatos, O., Herbert, B.M., Mai, S., & Kammer, T. (2016). Changes in interoceptive processes following brain stimulation. Philosophical Transactions of the Royal Society B: Biological Sciences, 371 (1708), 20160016. https://doi.org/10.1098/rstb.2016.0016 

Pollatos, O., & Schandry, R. (2004). Accuracy of heartbeat perception is reflected in the amplitude of the heartbeat-­evoked brain potential. Psychophysiology, 41 (3), 476–482. https://doi.org/10.1111/1469–8986.2004.00170.x 

Pollatos, O., Yeldesbay, A., Pikovsky, A., & Rosenblum, M. (2014). How much time has passed? Ask your heart. Frontiers in Neurorobotics, 8, 15. 

Richter, F., Ibáñez, A. (2021). Time is body: Multimodal evidence of crosstalk between interoception and time estimation. Biological Psychology, 159, 108017. https://doi.org/10.1016/j.biopsycho.2021.108017 

Schreckenberger, M., Lange-­Asschenfeld, C., Lochmann, M., Mann, K., Siessmeier, T., Buchholz, H.-G., Bartenstein, P., & Gründer, G. (2004). The thalamus as the generator and modulator of EEG alpha rhythm: A combined PET/EEG study with lorazepam challenge in humans. NeuroImage, 22 (2), 637–644. https://doi.org/10.1016/j.neuroimage.2004.01.047 

Schwarz, M.A., Winkler, I., & Sedlmeier, P. (2013). The heart beat does not make us tick: The impacts of heart rate and arousal on time perception. Attention, Perception, & Psychophysics, 75 (1), 182–193. https://doi.org/10.3758/s13414–012–0387–8 

Shiffman, H.R. (2003). Feeling and Perception. SPb.: Piter. (In Russ.). 

Soghoyan, G., Ledovsky, A., Nekrashevich, M., Martynova, O., Polikanova, I., Portnova, G., Rebreikina, A., Sysoeva, O., & Sharaev, M. (2021). A Toolbox and Crowdsourcing Platform for Automatic Labeling of Independent Components in Electroencephalography. Frontiers in Neuroinformatics, 15, 720229. https://doi.org/10.3389/fninf.2021.720229 

Sysoeva, O.V., Wittmann, M., Mierau, A., Polikanova, I., Strüder, H.K., & Tonevitsky, A. (2013). Physical exercise speeds up motor timing. Frontiers in Psychology, 4, 612. 

Terhaar, J., Viola, F.C., Bär, K.-J., & Debener, S. (2012). Heartbeat evoked potentials mirror altered body perception in depressed patients. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 123 (10), 1950–1957. https://doi.org/10.1016/j.clinph.2012.02.086 

Varela, F., Thompson, E., & Rosch, E. (1991). The embodied mind. Cambridge: MIT Press. 

Wiener, M., & Kanai, R. (2016). Frequency tuning for temporal perception and prediction. Current Opinion in Behavioral Sciences, 8, 1–6. https://doi.org/10.1016/j.cobeha.2016.01.001 

Wittmann, M., Meissner, K. (2018). The embodiment of time: How interoception shapes the perception of time. In M. Tsakiris & H. De Preester (Eds.), The Interoceptive Mind: From Homeostasis to Awareness. Oxford: Oxford University Press. https://doi. org/10.1093/oso/9780198811930.003.0004 

Wittmann, M., Simmons, A.N., Aron, J.L., & Paulus, M.P. (2010). Accumulation of neural activity in the posterior insula encodes the passage of time. Neuropsychologia, 48 (10), 3110–3120. https://doi.org/10.1016/j.neuropsychologia.2010.06.023 

Wittmann, M., Simmons, A.N., Flagan, T., Lane, S.D., Wackermann, J., & Paulus, M.P. (2011). Neural substrates of time perception and impulsivity. Brain Research, 1406, 43–58. https://doi.org/10.1016/j.brainres.2011.06.048


To cite this article:

Slovenko Ekaterina D., Dina G. Mitiureva, Olga V. Sysoeva. Attenuation of alpha-rhythm cardiosynchrony during subjective estimation of a minut. // National Psychological Journal 2023. 2. p.129–143. doi: 10.11621/npj.2023.0210

Copied to Clipboard

Copy