ISSN 2079-6617
eISSN 2309-9828
Quantitative estimates of performance on the Taylor Complex Figure (TCF) by children aged 4-17 years

Quantitative estimates of performance on the Taylor Complex Figure (TCF) by children aged 4-17 years

PDF (Rus)

Recieved: 01/27/2019

Accepted: 04/17/2019

Published: 04/30/2019

p.: 88-108

DOI: 10.11621/npj.2019.0109

Keywords: guideline exposure; children; neuropsychological diagnostics; constructive-spatial functions; visual memory disorder; spatial conceptions; validity

Available online: 30.04.2019

To cite this article:

Khokhlov, N.A., Serdyuk Alexandra E.. Quantitative estimates of performance on the Taylor Complex Figure (TCF) by children aged 4-17 years. // National Psychological Journal 2019. 1. p.88-108. doi: 10.11621/npj.2019.0109

Copied to Clipboard

Copy
Issue 1, 2019

Khokhlov, N.A. Centre for Testing and Development “Humanitarian Technologies”

Serdyuk Alexandra E. Lomonosov Moscow State University

Abstract

Introduction. The Taylor Complex Figure (TCF) technique is one of the neuropsychologist’s tools and is used to diagnose children after 4 y.o. and adults for assessing visual spatial characteristics, visual constructive skills and visual memory.

However, the lack of quantitative standards for using the Taylor method obtained within the Russian sample makes it difficult to apply it both in research and in practical work.

The Objective is to obtain age standards of the “Taylor Integrated Figure” technique on children 4–17 years old, and also to validate it according to the results of a neuropsychological examination.

Procedure. The study used the quantitative approach to assess the “Taylor Integrated Figure” children of 4–17 years. Each of the 18 elements of the figure was evaluated by the quality of the pattern and the correctness of the placement in space. The figure obtained by copying the original image and the figure reproduced by memory 20 minutes after copying were separately evaluated. Additionally, a qualitative assessment of the figures was carried out according to the level of development of metric and structural topological representations. The study involved 377 children, of which 243 boys and 134 girls aged from 52 to 214 months (average age - 117 ± 42 months).

Results. The nonlinear dependence of the estimated indicators on age was found. Age standards for the implementation of the technique for 5 age groups (4–5, 6–7, 8–9, 10–12, 13–17 years) were calculated. Indicators of the complexity of working with each element of the figure were obtained. Based on the analysis of the success ratio of the simplest and most complex elements of the figure, a mathematically grounded threshold for making a decision on the presence of aggravation has been proposed. The validity of the technique was assessed based on the results of a neuropsychological examination. It is shown that the technique to the greatest extent measures structural and spatial functions and visual memory in children under 13 years, it has low discriminant validity with respect to other neuropsychological characteristics. The substantive validity of qualitative assessments and quantitative indicators is in many respects the same, while quantitative indicators are about 1.5 times more strongly associated with the results of neuropsychological diagnostics.

Conclusion. Analysis of the predictive ability of logistic regression models indicates the possibility of applying the technique for screening diagnostics at school. The method allows separating children without neurocognitive deficiency from those who need to undergo a full neuropsychological examination.

Table 2. Age standards of using “Taylor Integrated Figure” technique 

Age (years)

4–5

6–7

8–9

10–12

13–17

Quantitative Evaluation

Copy - figure(CF)

8.6 ± 4.2

13.8 ± 2.3

15.7 ± 1.4

16.4 ± 1.2

17 ± 1.4

Copy – placement(CP)

9.4 ± 5

14.5 ± 2.7

16.5 ± 1.4

17.1 ± 1.1

17.5 ± 1.3

Reproduction – figure (RF)

5.3 ± 4

9.4 ± 3.2

11.7 ± 3.6

12.5 ± 2.9

13.8 ± 3

Reproduction – placement(RP)

5.7 ± 4.5

9.7 ± 3.5

12.4 ± 3.8

13.3 ± 3.2

14.6 ± 3.1

Copy (C)

18 ± 9.1

28.3 ± 4.8

32.3 ± 2.5

33.5 ± 2.2

34.5 ± 2.6

Reproduction  (R)

11 ± 8.4

19.1 ± 6.6

24.1 ± 7.3

25.8 ± 6

28.4 ± 6

Figure (F)

13.8 ± 7.7

23.1 ± 5

27.4 ± 4.5

28.9 ± 3.7

30.7 ± 3.9

Placement (P)

15.1 ± 8.9

24.3 ± 5.5

29 ± 4.8

30.4 ± 3.8

32.1 ± 3.8

Total Score

29 ± 16.4

47.4 ± 10.3

56.3 ± 9.1

59.2 ± 7.3

62.8 ± 7.6

Qualitative Evaluation

Copy – metric representations(CM)

2.1 ± 1

3.2 ± 0.7

3.6 ± 0.7

4 ± 0.6

4.3 ± 0.6

Copy-structural topological representations (CST)

2.3 ± 1.2

3.3 ± 0.9

4.1 ± 0.7

4.4 ± 0.7

4.7 ± 0.5

Reproduction – metric representations(RM)

1.5 ± 1

2.7 ± 0.8

3.3 ± 0.8

3.6 ± 0.7

4 ± 0.7

Reproduction - structural and topological representations (RST)

1.5 ± 1.1

2.4 ± 0.9

3.1 ± 1

3.4 ± 0.8

3.8 ± 0.9

Table 3. Taylor Complex Figure elements

Taylor Complex Figure elements

Initial Scale

Mean 

CF

CP

RF

RP

1

Arrow at left 

-2.5621

-2.4849

-1.2341

-1.1965

-1.8694

2

Triangle at left

-1.9612

-2.1595

-1.1524

-1.3038

-1.6442

3

Square

-0.5549

-2.4481

-0.3757

-1.7047

-1.2709

4

Horizontal line

-1.5873

-1.8105

-1.0601

-1.0951

-1.3883

5

Vertical line

-1.5779

-1.3276

-0.9717

-0.836

-1.1783

6

Horizontal line in top half

-1.219

-1.4181

0.6419

0.6185

-0.3442

7

Diagonals in top left quadrant 

-2.1312

-1.7253

-0.7011

-0.6477

-1.3013

8

Square in top left quadrant

-1.4609

-1.6254

-0.4756

-0.5607

-1.0307

9

Circle

-2.7338

-2.2795

-1.088

-0.9717

-1.7683

10

Rectangle

-1.8105

-1.9368

-0.3757

-0.3867

-1.1274

11

Arrow at top right quadrant 

-2.0499

-1.3117

-1.067

-0.5952

-1.256

12

Semicircle

-1.7779

-1.204

-0.2722

0.0318

-0.8056

13

Triangles

-1.5593

-1.4351

0.3374

0.0637

-0.6483

14

Dots

-1.0053

-1.6254

-0.1488

-0.4532

-0.8082

15

Horizontal line between dots

-2.0765

-2.0499

-0.1328

-0.0956

-1.0887

16

Triangle at bottom

-2.0112

-2.2031

-0.2668

-0.2722

-1.1883

17

Streacky wave

-0.4365

-1.9249

0.1051

-0.9321

-0.7971

18

Star

-0.5607

-2.1595

0.2237

-0.47

-0.7416

Table 4. Neuropsychological validity regression models of “Taylor Complex Figure” technique (total score) 

Neuropsychological characteristics

Standardizedcoefficient

R2

Adjusted R2

4–17 years (together)

Visual memory

0.536

0.426

0.425

Constructive-spatial functions

0.115

0.454

0.451

Thinking

0.113

0.469

0.464

Dynamic Praxis

0.092

0.478

0.472

Visual perception

0.091

0.484

0.477

4–5 years

Constructive-spatial functions

0.429

0.28

0.26

Thinking

0.301

0.413

0.379

Oral-verbal memory

0.295

0.491

0.445

6–7 years

Visual memory

0.432

0.279

0.272

Visual perception

0.229

0.327

0.313

Dynamic Praxis

0.184

0.361

0.341

8–9 years

Visual memory

0.585

0.582

0.574

Visual perception

0.253

0.64

0.626

Dynamic Praxis

0.23

0.698

0.68

Constructive-spatial functions

0.174

0.724

0.701

10–12 years

Visual memory

0.663

0.503

0.495

Dynamic Praxis

0.289

0.584

0.572

13–17 years

Visual memory

0.641

0.611

0.606

Constructive-spatial functions

0.269

0.664

0.655


   Table 5. Regression models of neuropsychological validity of the “Taylor Complex Figure” technique (on the secondary scale “Copy”)

Neuropsychological characteristics

Standardizedcoefficient

R2

скорректированныйR2

4–17 years (все вместе)

Constructive-spatial functions

0.276

0.153

0.150

Regulatory functions

0.164

0.196

0.191

Dynamic Praxis

0.134

0.212

0.205

Visual memory

0.129

0.226

0.217

4–5 years

Constructive-spatial functions

0.509

0.287

0.266

Attention

0.323

0.39

0.354

6–7 years

Visual perception

0.196

0.109

0.1

Dynamic Praxis

0.204

0.166

0.148

Constructive-spatial functions

0.248

0.217

0.192

Regulatory functions

0.198

0.253

0.222

8–9 years

Regulatory functions

0.301

0.254

0.239

Constructive-spatial functions

0.292

0.36

0.335

Dynamic Praxis

0.282

0.426

0.392

Visual perception

0.229

0.476

0.434

10–12 years

Constructive-spatial functions

0.337

0.256

0.245

Dynamic Praxis

0.311

0.366

0.347

Attention

0.25

0.424

0.398

13–17 years

Constructive-spatial functions

0.415

0.173

0.161


Table 6. Regression models of neuropsychological validity of the “Taylor Complex Figure” technique (on the secondary scale “Reproduction”)

 

Neuropsychological characteristics

Standardizedcoefficient

R2

Adjusted R2

4–17 years (все вместе)

Visual memory

0.605

0.494

0.493

Oral-verbal memory

0.125

0.514

0.511

Visual perception

0.107

0.525

0.521

Regulatory functions

0.084

0.532

0.526

4–5 years

Visual memory

0.357

0.364

0.346

Oral-verbal memory

0.331

0.476

0.445

Constructive-spatial functions

0.314

0.56

0.52

6–7 years

Visual memory

0.495

0.358

0.351

Speech

0.201

0.41

0.398

Visual perception

0.175

0.435

0.417

8-9 years

Visual memory

0.662

0.598

0.591

Visual perception

0.279

0.663

0.65

Dynamic Praxis

0.177

0.693

0.675

10–12 years

Visual memory

0.729

0.573

0.567

Dynamic Praxis

0.180

0.605

0.593

13–17 years

Visual memory

0.719

0.684

0.68

Constructive-spatial functions

0.206

0.715

0.707


Table 7. Regression models of neuropsychological validity of the “Taylor Complex Figure” technique (on the secondary scale “Figure”)

 

Neuropsychological characteristics

Standardizedcoefficient

R2

Adjusted R2

4–17 years (все вместе)

Visual memory

0.452

0.379

0.377

Constructive-spatial functions

0.134

0.411

0.407

Thinking

0.105

0.427

0.422

Oral-verbal memory

0.101

0.439

0.432

Visual perception

0.102

0.448

0.440

Regulatory functions

0.091

0.456

0.446

4–5 years

Constructive-spatial functions

0.41

0.266

0.245

Oral-verbal memory

0.334

0.415

0.381

Thinking

0.268

0.482

0.435

6–7 years

Visual memory

0.361

0.269

0.262

Visual perception

0.256

0.34

0.326

Oral-verbal memory

0.217

0.388

0.369

Dynamic Praxis

0.17

0.417

0.392

8–9 years

Visual memory

0.586

0.506

0.497

Visual perception

0.284

0.57

0.554

Dynamic Praxis

0.243

0.627

0.605

10–12 years

Visual memory

0.614

0.429

0.421

Dynamic Praxis

0.262

0.496

0.482

13–17 years

Visual memory

0.56

0.526

0.519

Constructive-spatial functions

0.314

0.597

0.586


Table 8. Regression models of neuropsychological validity of the “Taylor Complex Figure” technique (on the secondary scale “Placement”)

 

Neuropsychological characteristics

Standardizedcoefficient

R2

Adjusted R2

4–17 years (все вместе)

Visual memory

0.571

0.43

0.429

Constructive-spatial functions

0.119

0.452

0.448

Thinking

0.104

0.463

0.458

Dynamic Praxis

0.088

0.47

0.464

4–5 years

Constructive-spatial functions

0.453

0.299

0.279

Thinking

0.301

0.428

0.394

Oral-verbal memory

0.269

0.492

0.446

6–7 years

Visual memory

0.431

0.262

0.254

Dynamic Praxis

0.193

0.302

0.287

Visual perception

0.188

0.332

0.311

8–9 years

Visual memory

0.601

0.61

0.603

Visual perception

0.266

0.678

0.666

Constructive-spatial functions

0.205

0.72

0.704

Dynamic Praxis

0.161

0.745

0.725

10–12 years

Visual memory

0.664

0.503

0.496

Dynamic Praxis

0.271

0.582

0.57

Progress rate

0.169

0.611

0.593

13–17 years

Visual memory

0.723

0.662

0.658

Constructive-spatial functions

0.173

0.684

0.675


Table 9. Predicted data of neurocognitive deficiency “Taylor Complex Figure” technique (total score)

 

Obtained data

Predicted data

With neurocognitive deficiency 

Without neurocognitive deficiency

With neurocognitive deficiency

36

63

Without neurocognitive deficiency

19

222

Table 10. Predicted data of neurocognitive deficiency “Taylor Complex Figure” technique (“Copy” scale) 

 

Obtained data

Predicted data

With neurocognitive deficiency 

With neurocognitive deficiency 

With neurocognitive deficiency

27

55

Without neurocognitive deficiency

28

230

References

  1. Akhutina T.V. (ed.) (2016). Methods of neuropsychological examination of 6–9 year old children. Moscow, V. Sekachev, 280.
  2. Akhutina T.V., & Pylaeva N.M. (2015). Overcoming the difficulties of learning: Neuropsychological approach: studies. allowance for stud. institutions higher. education. Moscow, Akademiya, 288.

  3. Akhutina T.V., Kamardina I.O., & Pylaeva N.M. (2012). Neuropsychologist at school: a manual for teachers, school psychologists and parents. Moscow, V. Sekachev, 48.

  4. Akhutina T.V., Korneev A.A., & Matveeva E.Yu. (2016). Development of programming and control functions in children aged 7–9 years. [Vestnik Moskovskogo Universiteta].Series 14. Psychology, 1, 42–63.

  5. Awad N., Tsiakas M., Gagnon M., Mertens V.B., Hill E., & Messier C. (2004). Explicit and objective scoring criteria for the Taylor complex figure test. Journal of Clinical and Experimental Neuropsychology, 26(3), 405–415.doi:10.1080/13803390490510112

  6. Balashov E.Yu., & Kovyazina M.S. (2014). Neuropsychological diagnosis. Classic stimulus materials. Moscow, Genesis, 12 (+ 72)

  7. Balashova E.Yu., & Kovyazina M.S. (2013). Neuropsychological diagnostics in questions and answers. Moscow, Genesis, 240.

  8. Casey M.B, Winner E., Hurwitz I., & DaSilva D. (1991). Does processing style affect recall of the Rey-Osterrieth or Taylor complex figures? Journal of Clinical and Experimental Neuropsychology,13(4), 600–606.doi:10.1080/01688639108401074

  9. Del Pino R., Peña J., Ibarretxe-Bilbao N., Schretlen D.J., & Ojeda N. (2015). Test de la figura compleja de Taylor: administración y corrección según un proceso de normalización y estandarización en población española. Revista De Neurologia, 61(9), 395­–404.

  10. Duley J.F., Wilkins J.W., Hamby S.L., Hopkins D.G., Burwell R.D., & Barry N.S. (1993). Explicit scoring criteria for the Rey-Osterrieth and Taylor complex figures. The Clinical Neuropsychologist, 7(1), 29–38.doi:10.1080/13854049308401885

  11. Gagnon M., Awad N., Mertens V.B., & Messier C. (2003). Comparing the Rey and Taylor Complex Figures: A Test-Retest Study in Young and Older Adults. Journal of Clinical and Experimental Neuropsychology, 25(6), 878–890.doi:10.1076/jcen.25.6.878.16480

  12. Glozman J.M. (2009). Neuropsychology of childhood: manual. Moscow, Akademiya, 272.

  13. Glozman J.M. (2017). Neuropsychology of childhood: textbook. Moscow, Yurayt, 258.

  14. Glozman J.M., & Sobolev A.E. (2013). Neuropsychological diagnosis of school-age children. Moscow: Meaning, 166.

  15. Glozman Zh.M. (ed.) (2016). Practical neuropsychology. Experience of working with children learning with difficulties. Moscow, Genesis, 336.

  16. Korsakova N.K., Mikadze Yu.V., & Balashova E.Yu. (2017). Poor children: neuropsychological diagnosis of younger students: manual. Moscow, Yurayt, 156.

  17. Kuehn S.M., & Snow W.G. (1992). Are the Rey and Taylor figures equivalent?  Archives of Clinical Neuropsychology,7(5), 445–448.

  18. Manelis N.G. (1997). Development of optical-spatial functions in ontogenesis. [Shola zdorov’ya],4(3), 25–37.

  19. Melrose R.J., Harwood D., Khoo T., Mandelkern M., & Sultzer D.L. (2013). Association between cerebral metabolism and Rey-Osterrieth Complex Figure Test performance in Alzheimer’s disease. Journal of Clinical and Experimental Neuropsychology,35(3), 246–258.doi:0.1080/13803395.2012.763113

  20. Meyers J.E., & Meyers K.R. (1995). Rey complex figure test under four different administration procedures. The Clinical Neuropsychologist,9(1), 63–67.doi:10.1080/13854049508402059

  21. Mikadze Yu.V. (2013). Neuropsychology of childhood: study guide. St. Petersburg, Piter, 288.

  22. Osterreith P.A. (1944). La test de copie d'une figure complexe. Archives de Psychologie,30,206–356.

  23. Polonskaya N.N. (2007). Neuropsychological diagnosis of children of primary school age: manual for higher school. Moscow, Akademiya, 192.

  24. Rey A. (1941). L'examen psychologie dan les cas d'encéphalopathie traumatique (Les problèmes). Archives de Psychologie, 28, 215–285.

  25. Semago N.Ya., & Semago M.M. (2007).The diagnostic kit of the psychologist: manual. Moscow, APKiPRO RF, 128.

  26. Semenovich A.V. (2013). Introduction to the neuropsychology of childhood: study guide. Moscow, Genesis, 319.

  27. Shmelev A.G. (2013). Practical testing. Testing in education, applied psychology and personnel management. Moscow, Maska, 688.

  28. Simernitskaya E.G. (1982). On the subject and specifics of child neuropsychology. A.R. In E.D. Chomskoy, L.S. Tsvetkova, & B.V.Zeigarnik (eds.) [Luriya i sovremennaya psikhologiya: sbornik statey pamyati A.R. Lurii].Moscow, Izdatelstvo Moskovskovskogo Universiteta, 110–118.

  29. Stern R.A., Singer E.A., Duke L.M., Singer N.G., Morey C.E., Daughtrey E.W., & Kaplan E. (1994.) The Boston qualitative scoring system for the Rey-Osterrieth complex figure: Description and interrater reliability. Clinical Neuropsychologist, 8(3), 309–322.doi:10.1080/13854049408404137

  30. Strauss E., & Spreen O. (1990). A comparison of the Rey and Taylor figures. Archives of Clinical Neuropsychology, 5(4),  417–420.doi:10.1093/arclin/5.4.417

  31. Strauss E., Sherman E.M.S., & Spreen O. (2006). A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary. 3rd ed. New York: Oxford University Press,1240.

  32. Taylor E.M. (1959). Psychological Appraisal of Children with Cerebral Defects.  Cambridge: Harvard University Press, 499.doi:10.4159/harvard.9780674367494

  33. Taylor L.B. (1969). Localisation of cerebral lesions by psychological testing. Clinical Neurosurgery, 16, 269–287.doi:10.1093/neurosurgery/16.CN_suppl_1.269

  34. Taylor L.B. (1979). Psychological assessment of neurosurgical patients. (Eds.) T. Rasmussen, & R. Marino. Functional Neurosurgery.  New York: Raven Press, 165–180.

  35. Tombaugh T.N., & Hubley A.M. (1991). Four studies comparing the Rey-Osterrieth and Taylor complex figures. Journal of Clinical and Experimental Neuropsychology,13(4), 589–599.doi:10.1080/01688639108401073

  36. Tremblay M.P., Potvin O., Callahan B.L., Belleville S., Gagnon J.F., Caza N., Ferland G., Hudon C., & Macoir J. (2015). Normative data for the Rey-Osterrieth and the Taylor complex figure tests in Quebec-French people. Archives of Clinical Neuropsychology, 30(1), 78–87.doi:10.1093/arclin/acu069

  37. Tsvetkova L.S. (2000). Methods of neuropsychological diagnosis of children. Moscow, Pedagogicheskoe obshchestvo Rossii, 128.

  38. Vingerhoets G., Lannoo E., & Wolters M. (1998). Comparing the Rey-Osterrieth and Taylor Complex Figures: Empirical data and meta-analysis. Psychologica Belgica,38(2), 109–119.

  39. Wasserman L.I., & Cherednikova T.V. (2013). The non-verbal technique “The complex figure” of Ray-Osterrit and its psycho-diagnostic value for the qualification of the neurocognitive deficit. [Sibirskiy Psikhologicheskiy zhurnal],49, 13–25.

  40. Wasserman L.I., & T.V. Cherednikova (2011). Psychological diagnostics of neurocognitive deficiency: Restructuring and approbation of the Ray-Osterrit technique “Complex figure”: methodical recommendations. St. Petersburg, 68.

  41. Yamashita H. (2006). Comparability of the Rey-Osterrieth Complex Figure, the Taylor Complex Figure, and the Modified Taylor Complex Figure in a normal sample of Japanese speakers. PsychologicalReports,  99(2),531–534. doi:10.2466/pr0.99.2.531-534

To cite this article:

Khokhlov, N.A., Serdyuk Alexandra E.. Quantitative estimates of performance on the Taylor Complex Figure (TCF) by children aged 4-17 years. // National Psychological Journal 2019. 1. p.88-108. doi: 10.11621/npj.2019.0109

Copied to Clipboard

Copy