ISSN 2079-6617
eISSN 2309-9828
Articles

Article

MainArticlesVolumes

Menshikova Galina Ya., Kovalev Artem I. (2015). Vection in virtual environments: psychological and psychophysiological mechanisms. National Psychological Journal. 4, 91-104.

Abstract

The self-motion illusion (‘vection’) refers to a subjective phenomenon where a stationary observer experiences a compelling sense of illusory self-motion when she/ he is exposed to large moving patterns of optic flow. As a part of vestibular dysfunction the self-motion illusion is accompanied by the complex of negative symptoms: vertigo, nausea, vomiting and headache. In recent years the phenomenon of vection has attracted the attention of researchers due to the development of virtual reality systems. In such systems stationary subjects are exposed to the large moving optic flow which leads to the appearance of vection. Despite the wide range of approaches and methods of its assessing there is no generally accepted view about the psychological and psychophysiological mechanisms of its appearance. This review considers various approaches to the study of the vection illusion, methods of its evaluation and various factors affecting its severity. Special attention is paid to the mechanisms of the brain activity underlying the vection perception, which was registered using the neuroimaging technique. This work contains also the analysis of the main factors influencing the vection perception such as technical features of virtual reality systems, individual characteristics of observers, cognitive rules of sensory information processing. A detailed description of psychological and psychophysiological methods allowing evaluating the vection strength is given. At the present understanding the process of the vection perception is an actual problem of theoretical and practical psychology. The experimental results may allow psychologists to solve the binding problem concerning the processes of sensory integration. As to practical application the results would help to develop new methods of counteracting the self-motion sickness for astronautics, pilots and sportsmen.

Received: 09/27/2015
Accepted: 10/10/2015
Pages: 91-104
DOI: 10.11621/npj.2015.0409

PDF: Download

Keywords: vection; self-motion illusion; virtual reality; simulator sickness;

Available Online 31.12.2015

 

Do not feel

Significantly feel

Moderately feel

I feel strongly

Discomfort

X

 

 

 

Fatigue                                                                           

 

X

 

 

Headache

 

X

 

 

Eye strain

 

 

X

 

Difficulty in eye focusing

 

 

 

X

Increased salivation

 

X

 

 

 

Dry mouth

 

X

 

 

Sweating

 

X

 

 

Nausea

 

 

X

 

Difficulty in concentration

 

X

 

 

"Heavy head"

X

 

 

 

Blurred vision

X

 

 

 

Dizziness with eyes open

 

X

 

 

Dizziness with eyes closed

 

 

X

 

The sense of rotation of the world

 

 

X

 

Abdominal pain

X

 

 

 

Belching

X

 

 

 

Other feelings

 

 

 

 

Total score

«Do not Feel» - 0

«Significantly Feel»-1

«Moderately Feel» -2

«I Feel Strongly» - 3

Value of "nausea"factor <N): N={0+0+1+1+2+1+0+0) x 9,54=47,7

Oculomotor factor value (O):O=(0+1+1+2+3+1+0) x 7,58=60,64

Value of "disorientation"factor (D): D=(3+2+0+0+1 +2+2) x 13,92=139,92

Total score value (TS):TS=(N+0+D) x 3,74=928,5

Table 1. Assessment of Simulator Sickness Questionnaire in the strongest experience of illusion convection (Kennedy et al., 1993)


Fig. 1. Model of influencing of the virtual environment on man (Nichols et al, 2002).

References:

Authié C., Mestre D. Optokinetic nystagmus is elicited by curvilinear optic flow during high speed curve driving // Vision Research. – 2011. –Volume 51. – Issue 16. – P. 1791-1800.

Bailey L., Denis J.H, Goldsmith G., Hall P.L., Sherwood J.D. A wellbore simulator formud-shale interaction studies // Journal of Petroleum Science and Engineering. – 1994. – Volume 11. – Issue 3. – P. 195-211.

Bouchard S., Robillard G., Renaud P., Bernier F. Exploring new dimensions in the assessment of virtual reality induced side effects // Journal Comput. Inf. Technol. – 2011. –Vol. 1 (3). – P. 20-32.

Brandt T., Bartenstein P., Janek A. & Dieterich M. Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex // Brain. – 1998. – Vol. 121(9). – P. 1749-1758.

Brandt T., Dichgans J. & Koenig E. Differential effects of central versus peripheral vision on egocentric and exocentric motion perception // Experimental Brain Research. – 1973. – Vol. 16. – P. 476-491.

Biocca F. Will simulation sickness slow down the diffusion of Virtual Environment technology // Presence: Teleoperators Virtual Environ. – 1992. – Vol. (3). – P. 334-343.

Brooks J.O., Goodenough R.R., Crisler M.C., Klein N.D., Alley R.L., Koon B.L., Logan Jr.W.C., Ogle J.H., Tyrrell R.A., Wills R.F. Simulator sickness during driving simulation studies // Accid. Anal. Prev. – 2010. – Vol. 42. – P. 788-796.

Delmore A., Martin C. Roles of retinal periphery and depth periphery in linear vection and visual control of standing in humans // Canadian Journal of Psychology. – 1986. – Vol. 40. – P.176-187.

Diels C., Howarth P. Visually induced motion sickness: Single-versus dual-axis motion // Displays. –2011. – Vol. 32 (4). – P. 175-180.

DiZio P., Lackner J.R. Motion sickness side effects and aftereffects of immersive virtual environments created with helmet-mounted visual displays. // NATO RTO-MP-54, The Capability of Virtual Reality to Meet Military Requirements, 2000. – P. 11-14.

Dobie T., McBride D., Dobie Jr.T., May J. The effects of age and sex on susceptibility to motion sickness // Aviation Space Environment Medicine. – 2001. – Vol. 72. – P. 13-20.

Ebenholtz S., Cohen M., Linder B. The possible role of nystagmus in motion sickness: a hypothesis // Aviation Space and Environmental Medicine. – 1994. – 65. – P. 1032-1035.

Feenstra P.J., Bos J.E. & Van Gent R.N.H.W. A visual display enhancing comfort by counteracting airsickness // Displays. – 2011. – Vol. 32(4). – P. 194- 200.

Gibson, J. (1988) The ecological approach to visual perception. Moscow, KoLibri.

Gippenreiter, Yu.B. (1978) Human eye Movement. Moscow, Izdatel’stvo Moskovskogo Universiteta.

Golding J.F. Motion sickness susceptibility // Auton. Neurosci. Basic Clin. – 2006. – 129. – 67-76.

Goodale M., Milner A., Jacobson L., Carey S. A neurological dissociation between perceiving objects and grasping them // Nature. – 1991. – Vol. 349. – P. 154-156.

Harm D., Schlegel T. Predicting motion sickness during parabolic flight // Autonomic Neuroscience. –2002 – Volume 97. – Issue 2. – P. 116-121.

Hettinger L., Berbaum K., Kennedy R., Dunlap W., Nolan M. Vection and simulator sickness // Military Psychology. – 1990. – Vol. 2 (3). – P. 171-181.

Howarth P., Hodder S. (2008) Characteristics of habituation to motion in a virtual environment // Displays. – 2008. – Vol. 29. – P. 117-123.

Hu S., Davis M.S., Klose A.H., Zabinsky E.M., Meux S.P., Jacobsen H.A., Westfall J.M., Gruber M.B. Effects of spatial frequency of a vertically striped rotating drum on vection-induced motion sickness // Aviation Space Environment Medicine. – 1997. – Vol. 68. – P. 306-311.

Kellogg R., Kennedy R., Graybiel A., (1965). Motion sickness symptomatology of labyrinthine defective and normal subjects during zero gravity maneuvers // Aerospace Medicine. – 1965. – Vol. 36. – P. 315-318.

Kennedy R., Lane N., Kevin S., Berbaum M., Lilienthal M. Simulator Sickness Questionnaire: An Enhanced Method for Quantifying Simulator Sickness // The International Journal of Aviation Psychology. – 1993. – 3(3) July. – P. 203-220.

Keshavarz B., Berti S. Integration of sensory information precedes the sensation of vection: A combined behavioral and event-related brain potential (ERP) study // Behavioural Brain Research. – 2014. – Volume 259. – P.131-136.

Keshavarz B., Heiko H. Pleasant music as a countermeasure against visually induced motion sickness // Applied Ergonomics. – 2014. – Volume 45. – Issue 3. – P. 521-527.

Kim J., Palmisano S. Effects of active and passive viewpoint jitter on vection in depth // Brain Research Bulletin. – 2008. – 77. – P. 335-342.

Kirschbaum C., Pirke K.M., Hellhammer D.H. The trier social stress test – a tool for investigating psychobiological stress responses in a laboratory setting // Neuropsychobiology. – 1993. – Vol. 28. – P. 76-81.

Kleinschmidt A., Thilo K., Buchel C., Gresty M., Bronstein A., Richard S., Frackowiak R. Neural Correlates of Visual-Motion Perceptionas Object-or Self-motion // NeuroImage. – 2002. – Vol. 16. – P.873-882.

Klosterhalfen S., Pan F., Kellermann S., Enck P. Gender and Race as Determinants of Nausea Induced by Circular Vection // Gender Medicine. – 2006. –Vol. 3 (3). – P.171-177.

Lambreya S., Viaud-Delmonb I., Berthoz A. Influence of a sensorimotor conflict on the memorization of a path traveled in virtual reality // Cognitive Brain Research. – 2002. – Vol. 14. – P. 177-186.

Mach E. Grundlinien der Lehre von den Bewegungsempfindungen. // Verlag von Wilhelm Engelmann. – Leipzig, 1875.

Menshikova G., Kovalev A., Klimova O., Chernorizov A., Leonov S. Testing the vestibular function development in junior figure skaters using the eye tracking technique // Procedia, social and behavioral sciences. – 2014. – Vol. 146. – P. 252-258.

Menshikova G., Kovalev A., Klimova O., Chernorizov A. Eye movements as indicators of vestibular dysfunction // Perception. – 2015. – Vol. 44 (8-9). – P. 1103-1110.

McCauley M.E., Sharkey T.J. Cybersickness: perception of motion in virtual environments // Presence: Teleoperators Virtual Environ. – 1992. – Vol. 1 (3). – P. 311-318.

Money K.E., Lackner J.R., Cheung R.S.K. The autonomic nervous system and motion sickness. // Yates, B.J., Miller, A.D. (Eds.) Vestibular Autonomic Regulation. – CRC Press, Boca Raton, FL, 1996. – P. 147-173.

Mullen N.W., Weaver B., Riendeau J.A., Morrison L.E., Bedard M. Driving performance ans susceptibility to simulator sickness: are they related? // American Journal of Occupational Therapy. – 2010. – Vol. 64(2). – P. 288-295.

Nakagawa S., Nishiike S., Tonoike M., Takeda N., Kubo T. Measurements of brain magnetic fields associated with apparent self-motion // International Congress Series. – 2002. – 1232. – P. 367-371.

Nichols S., Patel H. Health and safety implications of virtual reality: A review of empirical evidence // Applied Ergonomics. – 2002. – Vol. 33 (3). – P. 251- 271.

Ohmi M., Howard I.P. Effect of stationary objects on illusory forward self-motion induced by a looming display // Perception. – 1988. – Vol. 17. – P. 5-12.

Ohmi M. Sensation of self-motion induced by real-world stimuli. Selection and Integration of Visual Information: Proceedings of the International Workshop on Advances in Research on Visual Cognition, Tsukuba, Japan, December 8-11, 1997. – 175-181.

Park J.R., Lim D.W., Lee S.Y., Lee H.W., Choi H.H., Chung S.C. Long-term study of simulator sickness: differences in EEG response due to individual sensitivity // International Journal of Neuroscience. – 2008. – Vol. 118. – P. 857-865.

Prothero J.D. The role of rest frames in vection, presence and motion sickness. – PhD thesis: University of Washington, USA, 1998.

Pyykko I., Schalen L., Jantti V., Magnusson M. A reduction of vestibulo-visual integration during transdermally administered scopolamine and dimenhydrinate. A presentation of gain control theory in motion sickness. // Acta Otolaryngologica Supplement P. – 1984. – 406. – 167-73.

Riccio G.E., Stoffregen T.A. An ecological theory of motion sickness and postural instability // Ecological Psychology. – 1991. – Vol. 3 (3). – P. 195-240.

Riecke L., Esposito F., Bonte M. & Formisano E. Hearing Illusory Sounds in Noise: The Timing of Sensory-Perceptual Transformations in Auditory Cortex // Neuron. – 2009. – Vol. 64(4). – P. 550-561.

Reason, J.T. Motion sickness adaptation: a neural mis-match model // Journal of the Royal Society of Medicine. – 1978. – Vol. 71(11). – P. 819-829.

Seno T., Kawabe T., Ito H., Sunaga S. Vection modulates emotional valence of autobiographical episodic memories // Cognition. – 2013. – Volume 126. – Issue 1. – P. 115-120.

Seno T., Palmisano S., Hiroyuki I. Independent modulation of motion and vection aftereffects revealed by using coherent oscillation and random jitter in optic flow // Vision Research. – 2011. – Volume 51. – Issues 23-24. – P. 2499-2508.

Slater M. Place illusion and plausibility illusion can lead to realistic behavior in immersive virtual environments // Philosophical Transactions of the Royal Society B: Biological Sciences. – 2009. – Vol. 364(1535). – P. 3549-3557.

Slobounov S., Teel E., Newell K. Modulation of cortical activity in response to visually induced postural perturbation: Combined VR and EEG study // Neuroscience Letters. – 2013. – Volume 547. – P. 6-9.

Spielberger C.D. Manual for the State-Trait Anxiety Inventory, (Form Y) (Self- Evaluation Questionnaire) // Consulting Psychologist Press, Palo Alto, 1983.

Stanney K.M., Hale K.S., Nahmens I., Kennedy R.S. What to expect from immersive virtual environment exposure: influence of gender, body mass index, and past experience // Human Factors. – 2003. – Vol. 45 (3). – P. 504–520.

Stanney K.M., Hash P. Locus of user-initiated control in virtual environments: influences on cybersickness // Presence: Teleoperators in Virtual Environments. – 1998. – Vol. 7. – P. 447-459.

Tanaka N., Takagi H. Virtual reality environment design of managing both presence and virtual reality sickness // Journal of physiological anthropology and applied human science. – 2004. – Vol. 23(6). – P. 313-317.

Treisman M. Motion sickness: an evolutionary hypothesis // Science. – 1977. – Vol. 197. – P. 493-495.

Villard S.J., Flanagan M.B., Albanese G.M., Stoffregen T.A. Postural instability and motion sickness in a virtual moving room // Human Factors. – 2008. – Vol. 50 (2). – P. 332-345.

Warwick-Evans L.A., Church R.E., Hancock C., Jochim D., Morris P.H., Ward F. Electrodermal activity as an index of motion sickness // Aviation Space Environment Medicine. – 1987. – Vol. 58. – P. 417-423.

Zinchenko, Y., Menshikova, G., Bayakovsky, Yu., Chernorizov, A., & Voiskunsky, A. (2010) Technology of virtual reality: methodological aspects, achievements and prospects. National psychological journal [Natsional’nyy psikhologicheskiy zhurnal]. 2 (4), 64-72.

For citing this article:

Menshikova Galina Ya., Kovalev Artem I. (2015). Vection in virtual environments: psychological and psychophysiological mechanisms. National Psychological Journal. 4, 91-104.